A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France

2022 ◽  
Vol 262 ◽  
pp. 107205
Author(s):  
Bastien Richard ◽  
Bruno Bonté ◽  
Magalie Delmas ◽  
Isabelle Braud ◽  
Bruno Cheviron ◽  
...  
2012 ◽  
Vol 43 (1-2) ◽  
pp. 54-63 ◽  
Author(s):  
Baohong Lu ◽  
Huanghe Gu ◽  
Ziyin Xie ◽  
Jiufu Liu ◽  
Lejun Ma ◽  
...  

Stochastic simulation is widely applied for estimating the design flood of various hydrosystems. The design flood at a reservoir site should consider the impact of upstream reservoirs, along with any development of hydropower. This paper investigates and applies a stochastic simulation approach for determining the design flood of a complex cascade of reservoirs in the Longtan watershed, southern China. The magnitude of the design flood when the impact of the upstream reservoirs is considered is less than that without considering them. In particular, the stochastic simulation model takes into account both systematic and historical flood records. As the reliability of the frequency analysis increases with more representative samples, it is desirable to incorporate historical flood records, if available, into the stochastic simulation model. This study shows that the design values from the stochastic simulation method with historical flood records are higher than those without historical flood records. The paper demonstrates the advantages of adopting a stochastic flow simulation approach to address design-flood-related issues for a complex cascade reservoir system.


2012 ◽  
Vol 225 ◽  
pp. 275-280
Author(s):  
Chandra B. Asthana ◽  
Rama B. Bhat

Most landing gears used in aircraft employ very efficient oleo-pneumatic dampers to absorb and dissipate the impact kinetic energy of the aircraft body frame. A single-acting shock absorber is most commonly used in the oleo strut that has a metering pin extending through the orifice, which can vary the orifice area upon compression and extension of the strut. This variation is adjusted by shaping the metering pin so that the strut load is fairly constant under dynamic loading. In this paper, it is proposed to further change the damping coefficient as a function of time in order to achieve a semi-active control of the aircraft vibrations during landing by using Magnetorheological (MR) fluid in the Oleo. With the metering pin designed for a nominal flight condition, further variation in the fluid viscosity would help achieve the optimal performance in off-nominal flight conditions. A simulation approach is employed to show the effect of different profiles for viscosity variation in the MR fluid. The utility of such a damper can be very well exploited to include different criteria such as the landing distance after touchdown. This type of system can be used also in Unmanned Aerial Vehicle (UAV) application where the focus of design may be to accomplish the task without the consideration of passenger comfort.


2013 ◽  
Vol 13 (3) ◽  
pp. 583-596 ◽  
Author(s):  
M. Coustau ◽  
S. Ricci ◽  
V. Borrell-Estupina ◽  
C. Bouvier ◽  
O. Thual

Abstract. Mediterranean catchments in southern France are threatened by potentially devastating fast floods which are difficult to anticipate. In order to improve the skill of rainfall-runoff models in predicting such flash floods, hydrologists use data assimilation techniques to provide real-time updates of the model using observational data. This approach seeks to reduce the uncertainties present in different components of the hydrological model (forcing, parameters or state variables) in order to minimize the error in simulated discharges. This article presents a data assimilation procedure, the best linear unbiased estimator (BLUE), used with the goal of improving the peak discharge predictions generated by an event-based hydrological model Soil Conservation Service lag and route (SCS-LR). For a given prediction date, selected model inputs are corrected by assimilating discharge data observed at the basin outlet. This study is conducted on the Lez Mediterranean basin in southern France. The key objectives of this article are (i) to select the parameter(s) which allow for the most efficient and reliable correction of the simulated discharges, (ii) to demonstrate the impact of the correction of the initial condition upon simulated discharges, and (iii) to identify and understand conditions in which this technique fails to improve the forecast skill. The correction of the initial moisture deficit of the soil reservoir proves to be the most efficient control parameter for adjusting the peak discharge. Using data assimilation, this correction leads to an average of 12% improvement in the flood peak magnitude forecast in 75% of cases. The investigation of the other 25% of cases points out a number of precautions for the appropriate use of this data assimilation procedure.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ming Ma ◽  
Sophie Rosenberg ◽  
Alexander M. Kaizer

Abstract Objective While it is known that nonresponse might produce biased results and impair the precision of results in survey research studies, the pattern of the impact on the precision of estimates due to the nonresponse in different survey stages is historically overlooked. Having this type of information is essential when creating recruitment plans. This study proposes to examine and compare the effect of nonresponse in different stages on the precision of prevalence estimates in multi-stage survey studies. Based on data from a state level survey, a simulation approach was used to generate datasets with different nonresponse rates in three stages. The margin of error was then compared between the datasets with nonresponse at three different survey stages for 12 outcomes. Results At the same nonresponse rate, the mean margin of error was greater for the data with nonresponse at higher stages. Additionally, as the nonresponse rate increased, precision was more inflated within the data with higher stage nonresponse. This suggests that the effort used to recruit the primary sampling units is more crucial to improve the precision of estimates in multi-stage survey studies.


2021 ◽  
pp. 79-99
Author(s):  
Minhaz-Ul Haq

This paper attempts to picture the impact of the market risk of ten commercial banks located in Bangladesh with the help of a non-parametric model known as the Historical Simulation Approach over the course of eight years. These banks' daily stock prices were used as inputs and analyzed in Microsoft Excel by means of Percentile and LN function. The study revealed market risk exposure as third, second-and first-generation banks from the least to the highest. It also pointed out the ups and downs of these banks' share prices in the selected period. Further analysis showed the portfolio VaR estimation for different time intervals. JEL classification numbers: G32. Keywords: Value-at-risk, Historical Simulation, Market Risk, Confidence Interval.


2012 ◽  
Vol 7 (8) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Erich Schmidt ◽  
Jürgen Wanner ◽  
Martina Höferl ◽  
Leopold Jirovetz ◽  
Gerhard Buchbauer ◽  
...  

The essential oils of four chemotypes of Thymus vulgaris L. (Lamiaceae) were analyzed for their composition and antibacterial activity to assess their different properties. GC-MS and GC-FID analyses revealed that the essentials oils can be classified into the chemotypes thymol (41.0% thymol), geraniol (26.4% geraniol), linalool (72.5% linalool) and 4-thujanol/terpinen-4-ol (42.2% cis- and 7.3% trans-sabinene hydrate, 6.5 % terpinen-4-ol). The olfactory examination confirmed the explicit differences between these chemotypes. Furthermore, antibacterial activity was investigated against several strains of two Gram-positive ( Brochothrix thermosphacta and Staphylococcus aureus) and four Gram-negative food-borne bacteria ( Escherichia coli, Salmonella abony, Pseudomonas aeruginosa and P. fragi). All essential oil samples were demonstrated to be highly effective against Gram-positive strains, whereas the impact on Gramnegative microorganisms was significantly smaller, but still considerable. The results obtained indicate that, despite their different properties, the essential oils of selected T. vulgaris chemotypes are potent antimicrobials to be employed as useful additives in food products as well as for therapeutic applications.


Sign in / Sign up

Export Citation Format

Share Document