scholarly journals Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles

2014 ◽  
Vol 211 (4) ◽  
pp. 380.e1-380.e13 ◽  
Author(s):  
Kok Hian Tan ◽  
Soon Sim Tan ◽  
Siu Kwan Sze ◽  
Wai Kheong Ryan Lee ◽  
Mor Jack Ng ◽  
...  
2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Álvaro M. Martins ◽  
Cátia C. Ramos ◽  
Daniela Freitas ◽  
Celso A. Reis

Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 654
Author(s):  
Nicholas Kevin Willard ◽  
Emelyn Salazar ◽  
Fabiola Alejandra Oyervides ◽  
Cierra Siobhrie Wiebe ◽  
Jack Sutton Ocheltree ◽  
...  

The global exploration of snakebites requires the use of quantitative omics approaches to characterize snake venom as it enters into the systemic circulation. These omics approaches give insights into the venom proteome, but a further exploration is warranted to analyze the venom-reactome for the identification of snake venom biomarkers. The recent discovery of extracellular vesicles (EVs), and their critical cellular functions, has presented them as intriguing sources for biomarker discovery and disease diagnosis. Herein, we purified EV’s from the snake venom (svEVs) of Crotalus atrox and C. oreganus helleri, and from plasma of BALB/c mice injected with venom from each snake using EVtrap in conjunction with quantitative mass spectrometry for the proteomic identification and quantification of svEVs and plasma biomarkers. Snake venom EVs from C. atrox and C. o. helleri were highly enriched in 5′ nucleosidase, L-amino acid oxidase, and metalloproteinases. In mouse plasma EVs, a bioinformatic analysis for revealed upregulated responses involved with cytochrome P450, lipid metabolism, acute phase inflammation immune, and heat shock responses, while downregulated proteins were associated with mitochondrial electron transport, NADH, TCA, cortical cytoskeleton, reticulum stress, and oxidative reduction. Altogether, this analysis will provide direct evidence for svEVs composition and observation of the physiological changes of an envenomated organism.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 864 ◽  
Author(s):  
Sanjana Haque ◽  
Sunitha Kodidela ◽  
Kelli Gerth ◽  
Elham Hatami ◽  
Neha Verma ◽  
...  

In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.


2020 ◽  
Vol 21 (24) ◽  
pp. 9425
Author(s):  
Sebastian Sjoqvist ◽  
Kentaro Otake ◽  
Yoshihiko Hirozane

There is a lack of reliable biomarkers for disorders of the central nervous system (CNS), and diagnostics still heavily rely on symptoms that are both subjective and difficult to quantify. The cerebrospinal fluid (CSF) is a promising source of biomarkers due to its close connection to the CNS. Extracellular vesicles are actively secreted by cells, and proteomic analysis of CSF extracellular vesicles (EVs) and their molecular composition likely reflects changes in the CNS to a higher extent compared with total CSF, especially in the case of neuroinflammation, which could increase blood–brain barrier permeability and cause an influx of plasma proteins into the CSF. We used proximity extension assay for proteomic analysis due to its high sensitivity. We believe that this methodology could be useful for de novo biomarker discovery for several CNS diseases. We compared four commercially available kits for EV isolation: MagCapture and ExoIntact (based on magnetic beads), EVSecond L70 (size-exclusion chromatography), and exoEasy (membrane affinity). The isolated EVs were characterized by nanoparticle tracking analysis, ELISA (CD63, CD81 and albumin), and proximity extension assay (PEA) using two different panels, each consisting of 92 markers. The exoEasy samples did not pass the built-in quality controls and were excluded from downstream analysis. The number of detectable proteins in the ExoIntact samples was considerably higher (~150% for the cardiovascular III panel and ~320% for the cell regulation panel) compared with other groups. ExoIntact also showed the highest intersample correlation with an average Pearson’s correlation coefficient of 0.991 compared with 0.985 and 0.927 for MagCapture and EVSecond, respectively. The median coefficient of variation was 5%, 8%, and 22% for ExoIntact, MagCapture, and EVSecond, respectively. Comparing total CSF and ExoIntact samples revealed 70 differentially expressed proteins in the cardiovascular III panel and 17 in the cell regulation panel. To our knowledge, this is the first time that CSF EVs were analyzed by PEA. In conclusion, analysis of CSF EVs by PEA is feasible, and different isolation kits give distinct results, with ExoIntact showing the highest number of identified proteins with the lowest variability.


2020 ◽  
Vol 21 (13) ◽  
pp. 4754 ◽  
Author(s):  
Susannah Hallal ◽  
Ali Azimi ◽  
Heng Wei ◽  
Nicholas Ho ◽  
Maggie Yuk Ting Lee ◽  
...  

Improving outcomes for diffuse glioma patients requires methods that can accurately and sensitively monitor tumour activity and treatment response. Extracellular vesicles (EV) are membranous nanoparticles that can traverse the blood–brain-barrier, carrying oncogenic molecules into the circulation. Measuring clinically relevant glioma biomarkers cargoed in circulating EVs could revolutionise how glioma patients are managed. Despite their suitability for biomarker discovery, the co-isolation of highly abundant complex blood proteins has hindered comprehensive proteomic studies of circulating-EVs. Plasma-EVs isolated from pre-operative glioma grade II–IV patients (n = 41) and controls (n = 11) were sequenced by Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) and data extraction was performed by aligning against a custom 8662-protein library. Overall, 4054 proteins were measured in plasma-EVs. Differentially expressed proteins and putative circulating-EV markers were identified (adj. p-value < 0.05), including those reported in previous in-vitro and ex-vivo glioma-EV studies. Principal component analysis showed that plasma-EV protein profiles clustered according to glioma histological-subtype and grade, and plasma-EVs resampled from patients with recurrent tumour progression grouped with more aggressive glioma samples. The extensive plasma-EV proteome profiles achieved here highlight the potential for SWATH-MS to define circulating-EV biomarkers for objective blood-based measurements of glioma activity that could serve as ideal surrogate endpoints to assess tumour progression and allow more dynamic, patient-centred treatment protocols.


2010 ◽  
Vol 102 (3) ◽  
pp. 630-638 ◽  
Author(s):  
Yusuke Murakoshi ◽  
Kazufumi Honda ◽  
Shizuka Sasazuki ◽  
Masaya Ono ◽  
Ayako Negishi ◽  
...  

2020 ◽  
Author(s):  
Navneet Dogra ◽  
Mehmet Eren Ahsen ◽  
Edgar Gonzalez Kozlova ◽  
Tzu-yi Chen ◽  
kimaada allette ◽  
...  

Circulating extracellular vesicles (EVs) present in the bodily fluids of patients with cancer may provide non-invasive access to the tumor tissue. Yet, the transcriptomic lineage of tumor-derived EVs before and after tumor-resection remains poorly understood. Here, we established 60 total small RNA-sequencing profiles from 17 aggressive prostate cancer (PCa) patients tumor and adjacent normal tissue, and EVs isolated from urine, serum, and cancer cell culture media. We interrogated the key satellite alteration in tumor-derived EVs and found that resection of tumor prostate tissue leads to differential expression of reactive oxygen species (ROS), P53 pathways, inflammatory/cytokines, oncogenes, and tumor suppressor genes in the EV nanosatellites. Furthermore, we provide a set of novel EV-specific RNA signature, which are present in cancer but are nonexistent in post-resection patients with undetectable cancer. Finally, using a de novo RNAseq assembly followed by characterization of the small RNA landscape, we found novel small RNA clusters (smRCs) in the EVs, which reside in the unannotated regions. Novel smRCs were orthogonally validated for their differential expression in the biomarker discovery cohort using RT-qPCR. We demonstrate that circulating tumor EVs provide a glimpse of the tumor tissue biology, resolving a major bottleneck in the current liquid biopsy efforts. Secretory vesicles appear to be playing a key role in non-canonical Wnt signaling and miRNA pathways, similar to the circulating tumor cells (CTCs), hence, we propose that such vesicles be called circulating tumor extracellular vesicles (CTEVs).


Sign in / Sign up

Export Citation Format

Share Document