scholarly journals Effectiveness of mucus plug removal by bronchoscopy for typical high-attenuation mucus with allergic bronchopulmonary mycosis

Author(s):  
Norio Kodaka ◽  
Chihiro Nakano ◽  
Takeshi Oshio ◽  
Kayo Watanabe ◽  
Kumiko Niitsuma ◽  
...  
2021 ◽  
Author(s):  
Michał Mierczak ◽  
Jerzy Karczewski

AbstractThe article describes the establishment of the location of agate geodes using the GPR method in the area of the Simota gully (Lesser Poland Voivodeship). Agates (a multicolored variety of gemstone of chalcedony group) have multifaceted values that informed their study. Traditional methods of geode location are less reliable, hence the attempt to use the GPR method. Measurements were taken at two study test sites with subsurface geology of weathered melaphyre and pyroclastic deposits using a GPR system (ProEx). A high-frequency antenna (1.6 GHz) was used along with the pre-established profiles of lengths of 6-m and 10-cm intervals. Furthermore, simple soil tests using the soil sampler tool were made prior to the GPR measurement. The GPR results show significant high attenuation of the electromagnetic energy interpreted to be due to clay components of the regolith. Advanced signal processing procedures (such as the attribute of the signal) were used on the data for better enhancement that aided interpretation. Other anomalies depicted on the radargrams were thought to be the presence of roots, pieces of melaphyres-targeted agates. Furtherance to ascertain the reflection coefficients as recorded on the GPR data, in situ samples (root pieces, melaphyres, agates) taken were tested in the laboratory for electric permittivity property. Based on the interpretation results, several agate geodes were dug out from the ground.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Saeko Kita

AbstractI relocated the hypocenters of the 2018 M6.7 Hokkaido Eastern Iburi earthquake and its surrounding area, using a three-dimensional seismic structure, the double-difference relocation method, and the JMA earthquake catalog. After relocation, the focal depth of the mainshock became 35.4 km. As previous studies show, in south-central Hokkaido, the Hidaka collision zone is formed, and anomalous deep and thickened forearc crust material is subducting at depths of less than 70 km. The mainshock and its aftershocks are located at depths of approximately 10 to 40 km within the lower crust of the anomalous deep and thickened curst near the uppermost mantle material intrusions in the northwestern edge of this Hidaka collision zone. Like the two previous large events, the aftershocks of this event incline steeply eastward and appear to be distributed in the deeper extension of the Ishikari-teichi-toen fault zone. The highly inclined fault in the present study is consistent with a fault model by a geodetic analysis with InSAR. The aftershocks at depths of 10 to 20 km are located at the western edge of the high-attenuation (low-Qp) zone. These kinds of relationships between hypocenters and materials are the same as the 1970 and 1982 events in the Hidaka collision zone. The anomalous large focal depths of these large events compared with the average depth limit of inland earthquakes in Japan could be caused by the locally lower temperature in south-central Hokkaido. This event is one of the approximately M7 large inland earthquakes that occurred repeatedly at a recurrence interval of approximately 40 years and is important in the collision process in the Hidaka collision zone.


2021 ◽  
Vol 7 (6) ◽  
pp. 465
Author(s):  
Takahito Toyotome ◽  
Masahiko Takino ◽  
Masahiro Takaya ◽  
Maki Yahiro ◽  
Katsuhiko Kamei

Schizophyllum commune is a causative agent of allergic bronchopulmonary mycosis, allergic fungal rhinosinusitis, and basidiomycosis. Diagnosis of these diseases remains difficult because no commercially available tool exists to identify the pathogen. Unique volatile organic compounds produced by a pathogen might be useful for non-invasive diagnosis. Here, we explored microbial volatile organic compounds produced by S. commune. Volatile sulfur compounds, dimethyl disulfide (48 of 49 strains) and methyl ethyl disulfide (49 of 49 strains), diethyl disulfide (34 of 49 strains), dimethyl trisulfide (40 of 49 strains), and dimethyl tetrasulfide (32 of 49 strains) were detected from headspace air in S. commune cultured vials. Every S. commune strain produced at least one volatile sulfur compound analyzed in this study. Those volatile sulfur compounds were not detected from the cultures of Aspergillus spp. (A. fumigatus, A. flavus, A. niger, and A. terreus), which are other major causative agents of allergic bronchopulmonary mycosis. The last, we examined H2S detection using lead acetate paper. Headspace air from S. commune rapidly turned the lead acetate paper black. These results suggest that those volatile sulfur compounds are potent targets for the diagnosis of S. commune and infectious diseases.


2021 ◽  
Vol 11 (5) ◽  
pp. 364
Author(s):  
Bingjiang Qiu ◽  
Hylke van der van der Wel ◽  
Joep Kraeima ◽  
Haye Hendrik Glas ◽  
Jiapan Guo ◽  
...  

Accurate mandible segmentation is significant in the field of maxillofacial surgery to guide clinical diagnosis and treatment and develop appropriate surgical plans. In particular, cone-beam computed tomography (CBCT) images with metal parts, such as those used in oral and maxillofacial surgery (OMFS), often have susceptibilities when metal artifacts are present such as weak and blurred boundaries caused by a high-attenuation material and a low radiation dose in image acquisition. To overcome this problem, this paper proposes a novel deep learning-based approach (SASeg) for automated mandible segmentation that perceives overall mandible anatomical knowledge. SASeg utilizes a prior shape feature extractor (PSFE) module based on a mean mandible shape, and recurrent connections maintain the continuity structure of the mandible. The effectiveness of the proposed network is substantiated on a dental CBCT dataset from orthodontic treatment containing 59 patients. The experiments show that the proposed SASeg can be easily used to improve the prediction accuracy in a dental CBCT dataset corrupted by metal artifacts. In addition, the experimental results on the PDDCA dataset demonstrate that, compared with the state-of-the-art mandible segmentation models, our proposed SASeg can achieve better segmentation performance.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Toguchi ◽  
Toshio Takagi ◽  
Yuko Ogawa ◽  
Satoru Morita ◽  
Kazuhiko Yoshida ◽  
...  

AbstractTo investigate the detection of peritumoral pseudocapsule (PC) using multi-detector row computed tomography (MDCT) for tumors resected by robot-assisted laparoscopic partial nephrectomy (RAPN) for T1 renal cell carcinoma (RCC). Study participants included 206 patients with clinical T1 RCC who underwent RAPN between October 2017 and February 2018. Two radiologists who were blinded to the pathological findings evaluated the computed tomography (CT) images. Radiological diagnosis of a PC was defined by a combination of observations, including a low-attenuation rim between the tumor and renal cortex in the cortico-medullary phase and a high-attenuation rim at the edge of the tumor in the nephrogenic or excretory phase. A PC was detected on CT in 156/206 tumors (76%) and identified by pathology in 182/206 (88%) tumors including 153/166 (92%) clear cell RCC, 13/14 (93%) papillary RCC, and 7/16 (44%) chromophobe RCC. In the whole cohort, CT findings showed a sensitivity of 81.3% (148/182), specificity of 66.7% (16/24), and positive predictive value of 94.9% (148/156). When the data were stratified according to pathological subtypes, MDCT was observed to have a sensitivity of 86.9% (133/153) and specificity of 61.5% (8/13) in clear cell RCC, sensitivity of 38.5% (5/13) and specificity of 100% (1/1) in papillary RCC, and sensitivity of 44.4% (4/7) and specificity of 66.7% (6/9) in chromophobe RCC. A low or high-attenuation rim around the tumor in the cortico-medullary or nephrographic-to-excretory phase indicates a PC of RCC, though the accuracy is not satisfactory even with 64- or 320-detector MDCT.


Geophysics ◽  
1985 ◽  
Vol 50 (4) ◽  
pp. 615-626 ◽  
Author(s):  
S. D. Stainsby ◽  
M. H. Worthington

Four different methods of estimating Q from vertical seismic profile (VSP) data based on measurements of spectral ratios, pulse amplitude, pulse width, and zeroth lag autocorrelation of the attenuated impulse are described. The last procedure is referred to as the pulse‐power method. Practical problems concerning nonlinearity in the estimating procedures, uncertainties in the gain setting of the recording equipment, and the influence of structure are considered in detail. VSP data recorded in a well in the central North Sea were processed to obtain estimates of seismic attenuation. These data revealed a zone of high attenuation from approximately 4 900 ft to [Formula: see text] ft with a value of [Formula: see text] Results of the spectral‐ratio analysis show that the data conform to a linear constant Q model. In addition, since the pulse‐width measurement is dependent upon the dispersive model adopted, it is shown that a nondispersive model cannot possibly provide a match to the real data. No unambiguous evidence is presented that explains the cause of this low Q zone. However, it is tentatively concluded that the seismic attenuation may be associated with the degree of compaction of the sediments and the presence of deabsorbed gases.


Sign in / Sign up

Export Citation Format

Share Document