Predictions and experimental studies of the tail pipe noise of an automotive muffler using a one dimensional CFD model

2010 ◽  
Vol 71 (8) ◽  
pp. 701-707 ◽  
Author(s):  
Takashi Yasuda ◽  
Chaoqun Wu ◽  
Noritoshi Nakagawa ◽  
Kazuteru Nagamura
1995 ◽  
Vol 23 (2) ◽  
pp. 116-135 ◽  
Author(s):  
H. Shiobara ◽  
T. Akasaka ◽  
S. Kagami ◽  
S. Tsutsumi

Abstract The contact pressure distribution and the rolling resistance of a running radial tire under load are fundamental properties of the tire construction, important to the steering performance of automobiles, as is well known. Many theoretical and experimental studies have been previously published on these tire properties. However, the relationships between tire performances in service and tire structural properties have not been clarified sufficiently due to analytical and experimental difficulties. In this paper, establishing a spring support ring model made of a composite belt ring and a Voigt type viscoelastic spring system of the sidewall and the tread rubber, we analyze the one-dimensional contact pressure distribution of a running tire at speeds of up to 60 km/h. The predicted distribution of the contact pressure under appropriate values of damping coefficients of rubber is shown to be in good agreement with experimental results. It is confirmed by this study that increasing velocity causes the pressure to rise at the leading edge of the contact patch, accompanied by the lowered pressure at the trailing edge, and further a slight movement of the contact area in the forward direction.


1979 ◽  
Vol 34 (8) ◽  
pp. 983-985 ◽  
Author(s):  
Michael Hanack ◽  
Friedrich Franz Seelig ◽  
Joachim Strähle

AbstractA model for a new kind of one-dimensional conductors is presented. The compounds consist of square-planar metal complexes MX4 which are polymerised via bridging ligands L to linear chains. The bidentate ligand L, e.g. C22-, leads to the formation of a linear π-system along the chain, which is essential for the conductivity. The square-planar complex can be, for example, a metal phthalocyanine. MO-calculations show that this kind of polymer gives rise to a suitable energy band structure. An advantage of the new one-dimensional conductors is their flexibility; different combinations of the square-planar ligand system, the bridging ligand, and the central metal atom can be used. First experimental studies show that the preparation of the proposed conductors is possible.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Zhifang Zhou ◽  
Boran Zhang ◽  
Qiaona Guo ◽  
Shumei Zhu

Injecting freshwater and pumping salt water are effective methods to restore the salt water in a coastal area. Based on a one-dimensional vertical experiment, the variable density flow is simulated under the condition of different injection directions and injection rates of fresh water. A one-dimensional mathematical model of variable density flow and solute transport is established. The mathematical models are solved using the implicit difference method. Fortran code is developed to simulate and verify the vertical flow of variable density flow in different directions. Through both numerical simulation and experimental studies, it is found that the variable density fluid in the direction of reverse gravity is different from that in the direction of gravity. On this basis, the most effective desalination model of salt water is further discussed. It provides a theoretical and technical method for the restoration of salt water in the vertical injection of freshwater. In order to improve the remediation efficiency and reduce the cost in the engineering application, the suitable water injection rate should be ensured, considering the suitable construction time and zone of a study area.


The application of thermal methods to the study of steady-state combustion is described. Such methods provide a route to information on heat transfer and chemical kinetics which forms a basis for the implementation of numerical models. The experimental results from thermal analysis and temperature profile analysis have been examined within the context of a simple pseudo one-dimensional model of propagation offering some confirmation of the validity of the approach.


1976 ◽  
Vol 25 (2) ◽  
pp. 87-209 ◽  
Author(s):  
M. Steiner ◽  
J. Villain ◽  
C.G. Windsor

1997 ◽  
Vol 119 (1) ◽  
pp. 77-80 ◽  
Author(s):  
C. R. Davies ◽  
G. M. Saidel ◽  
H. Harasaki

Design criteria for implantable, heat-generating devices such as the total artificial heart require the determination of safe thresholds for chronic heating. This involves in-vivo experiments in which tissue temperature distributions are obtained in response to known heat sources. Prior to experimental studies, simulation using a mathematical model can help optimize the design of experiments. In this paper, a theoretical analysis of heat transfer is presented that describes the dynamic, one-dimensional distribution of temperature from a heated surface. Loss of heat by perfusion is represented by temperature-independent and temperature-dependent terms that can reflect changes in local control of blood flow. Model simulations using physiologically appropriate parameter values indicate that the temperature elevation profile caused by a heated surface adjacent to tissue may extend several centimeters into the tissue. Furthermore, sensitivity analysis indicates the conditions under which temperature profiles are sensitive to changes in thermal diffusivity and perfusion parameters. This information provides the basis for estimation of model parameters in different tissues and for prediction of the thermal responses of these tissues.


2004 ◽  
Vol 108 (1081) ◽  
pp. 145-152 ◽  
Author(s):  
A. J. Saddington ◽  
N. J. Lawson ◽  
K. Knowles

AbstractThe work described here concentrates on under-expanded, axisym-metric turbulent jets issuing into quiescent conditions. Under-expanded turbulent jets are applicable to most aircraft propulsion applications that use convergent nozzles. Experimental studies used laser doppler velocimetry (LDV) and pitot probe measurements along the jet centreline. These measurements were made for two nozzle pressure ratios (2·5 and 4·0) and at various streamwise positions up to 10 nozzle diameters downstream of the nozzle exit plane. A computational fluid dynamics (CFD) model was developed using the Fluent code and utilised the RNG K-ε two-equation turbulence model. A mesh resolution of approximately one hundredth of nozzle exit diameter was found to be sufficient to establish a mesh independent solution.Comparison of the jet centreline axial velocity (LDV data) and pressure ratio (pitot probe data) showed good agreement with the CFD model. The correct number of shock cells had been predicted and the shock strength agreed well between the experiments and numerical model. The CFD model was, however, found to over-predict the shock cell length resulting in a longer supersonic core. There was some evidence, based on analysis of the LDV measurements that indicates the presence of swirl and jet unsteadiness, which could contribute to a shortening of the shock cell length. These effects were not modelled in the CFD. Correlation between the LDV and pitot probe measurements was generally good, however, there was some evidence that probe interference may have caused the premature decay of the jet. Overall, this work has indicated the good agreement between a CFD simulation using the RNG k-ε turbulence model and experimental data when applied to the prediction of the flowfield generated by under-expanded turbulent jets. The suitability of the LDV technique to jet flows with velocities up to 500ms-1has also been demonstrated.


1991 ◽  
Vol 113 (3) ◽  
pp. 475-478
Author(s):  
E. C. Hansen

A steady-state flow apparatus was used to investigate the process of gun gas diversion through a single hole perforated disk diverter. The amount of diverted flow was found to depend on the distance between the nozzle and the diverter disk and the ratio of nozzle pressure to diverter exit pressure. Experimental studies used nitrogen and carbon dioxide as the working fluids to show the effect of specific heat ratio. At ratios of nozzle pressure to ambient pressure ranging from 4 to 60 diversion efficiencies of 50 to 99 percent were produced. A one-dimensional analytic gas flow model was developed. Results of the analytic model paralleled the experimental data for pressure ratios over 10.


Sign in / Sign up

Export Citation Format

Share Document