An experimental and numerical investigation of under-expanded turbulent jets

2004 ◽  
Vol 108 (1081) ◽  
pp. 145-152 ◽  
Author(s):  
A. J. Saddington ◽  
N. J. Lawson ◽  
K. Knowles

AbstractThe work described here concentrates on under-expanded, axisym-metric turbulent jets issuing into quiescent conditions. Under-expanded turbulent jets are applicable to most aircraft propulsion applications that use convergent nozzles. Experimental studies used laser doppler velocimetry (LDV) and pitot probe measurements along the jet centreline. These measurements were made for two nozzle pressure ratios (2·5 and 4·0) and at various streamwise positions up to 10 nozzle diameters downstream of the nozzle exit plane. A computational fluid dynamics (CFD) model was developed using the Fluent code and utilised the RNG K-ε two-equation turbulence model. A mesh resolution of approximately one hundredth of nozzle exit diameter was found to be sufficient to establish a mesh independent solution.Comparison of the jet centreline axial velocity (LDV data) and pressure ratio (pitot probe data) showed good agreement with the CFD model. The correct number of shock cells had been predicted and the shock strength agreed well between the experiments and numerical model. The CFD model was, however, found to over-predict the shock cell length resulting in a longer supersonic core. There was some evidence, based on analysis of the LDV measurements that indicates the presence of swirl and jet unsteadiness, which could contribute to a shortening of the shock cell length. These effects were not modelled in the CFD. Correlation between the LDV and pitot probe measurements was generally good, however, there was some evidence that probe interference may have caused the premature decay of the jet. Overall, this work has indicated the good agreement between a CFD simulation using the RNG k-ε turbulence model and experimental data when applied to the prediction of the flowfield generated by under-expanded turbulent jets. The suitability of the LDV technique to jet flows with velocities up to 500ms-1has also been demonstrated.

2004 ◽  
Vol 108 (1081) ◽  
pp. 145-152 ◽  
Author(s):  
A. J. Saddington ◽  
N. J. Lawson ◽  
K. Knowles

AbstractThe work described here concentrates on under-expanded, axisym-metric turbulent jets issuing into quiescent conditions. Under-expanded turbulent jets are applicable to most aircraft propulsion applications that use convergent nozzles. Experimental studies used laser doppler velocimetry (LDV) and pitot probe measurements along the jet centreline. These measurements were made for two nozzle pressure ratios (2·5 and 4·0) and at various streamwise positions up to 10 nozzle diameters downstream of the nozzle exit plane. A computational fluid dynamics (CFD) model was developed using the Fluent code and utilised the RNG K-ε two-equation turbulence model. A mesh resolution of approximately one hundredth of nozzle exit diameter was found to be sufficient to establish a mesh independent solution.Comparison of the jet centreline axial velocity (LDV data) and pressure ratio (pitot probe data) showed good agreement with the CFD model. The correct number of shock cells had been predicted and the shock strength agreed well between the experiments and numerical model. The CFD model was, however, found to over-predict the shock cell length resulting in a longer supersonic core. There was some evidence, based on analysis of the LDV measurements that indicates the presence of swirl and jet unsteadiness, which could contribute to a shortening of the shock cell length. These effects were not modelled in the CFD. Correlation between the LDV and pitot probe measurements was generally good, however, there was some evidence that probe interference may have caused the premature decay of the jet. Overall, this work has indicated the good agreement between a CFD simulation using the RNG k-ε turbulence model and experimental data when applied to the prediction of the flowfield generated by under-expanded turbulent jets. The suitability of the LDV technique to jet flows with velocities up to 500ms-1has also been demonstrated.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


1997 ◽  
Vol 24 ◽  
pp. 181-185 ◽  
Author(s):  
Katsuhisa Kawashima ◽  
Tomomi Yamada

The densification of water-saturated firn, which had formed just above the firn-ice transition in the wet-snow zone of temperate glaciers, was investigated by compression tests under pressures ranging from 0.036 to 0.173 MPa, with special reference to the relationship between densification rate, time and pressure. At each test, the logarithm of the densification rate was proportional to the logarithm of the time, and its proportionality constant increased exponentially with increasing pressure. The time necessary for ice formation in the firn aquifer was calculated using the empirical formula obtained from the tests. Consequently, the necessary time decreased exponentially as the pressure increased, which shows that the transformation from firn in ice can be completed within the period when the firn aquifer exists, if the overburden pressure acting on the water-saturated firn is above 0.12–0.14 MPa. This critical value of pressure was in good agreement with the overburden pressure obtained from depth–density curves of temperate glaciers. It was concluded that the depth of firn–ice transition was self-balanced by the overburden pressure to result in the concentration between 20 and 30 m.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


Author(s):  
Pavel Goldman ◽  
Agnes Muszynska

Abstract This report presents experimental, analytical, and numerical results describing vibrational phenomena in a rotating machine with one loose pedestal. The loose-pedestal machine rotor vibrations represent unbalance-related excited vibrations of synchronous and fractional subsynchronous regimes. In this study the loose-pedestal machine is first simulated by a simple vibrating beam excited by a shaker mounted on it. The shaker simulates an unbalanced machine rotor. The beam occasionally enters in contact with the foundation. The excited vibrations are modified by impacting occurrences, and by periodic changes in system stiffness. A new model of the impact has been developed. The results of analytical and experimental studies stand in a good agreement. They illustrate the existence of the synchronous regime and several subsynchronous fractional regimes in various excitation frequency ranges. The analysis adequately predicts the occurrence of these regimes and determines the physical parameters affecting them. The analytical and experimental results are then compared with the responses of experimental rotor rig with one bearing pedestal looseness. They show the same qualitative pattern.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1709 ◽  
Author(s):  
Curto ◽  
Aklan ◽  
Mulder ◽  
Mils ◽  
Schmidt ◽  
...  

Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations.


2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


1981 ◽  
Vol 25 (02) ◽  
pp. 77-89
Author(s):  
Owen F. Hughes

An explicit formula is presented for the design of welded steel plates subjected to uniform lateral pressure, on the basis of a designer-specified level of acceptable permanent set, including that due to welding. The formula is derived from a combination of theoretical and experimental studies and shows good agreement with experimental results. For the convenience of designers the formula is also given in the form of design curves. The paper also delineates the areas of application of this and other formulas for laterally loaded plating. In brief, the paper shows that for static and quasistatic loads the formula derived herein is more accurate than formulas based on either the pseudo-elastic or the rigid-plastic approach. As the load becomes more dynamic the rigid-plastic approach becomes more appropriate, and for high-speed impact loads the rigid-plastic approach is best. For quasistatic loads, such as slamming, the formula presented herein is somewhat conservative while the rigid-plastic formulas are somewhat optimistic. A similar formula for concentrated loads (such as wheel loads) will be presented in a subsequent paper.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Gul Gulpinar

Sound propagation in the Blume Capel model with quenched diluted single-ion anisotropy is investigated. The sound dispersion relation and an expression for the ultrasonic attenuation are derived with the aid of the method of thermodynamics of irreversible processes. A frequency-dependent dispersion minimum that is shifted to lower temperatures with rising frequency is observed in the ordered region. The thermal and sound frequency (ω) dependencies of the sound attenuation and effect of the Onsager rate coefficient are studied in low- and high-frequency regimes. The results showed that ωτ≪1 and ωτ≫1 are the conditions that describe low- and high-frequency regimes, where τ is the single relaxation time diverging in the vicinity of the critical temperature. In addition, assuming a linear coupling of sound wave with the order parameter fluctuations in the system and ε as the temperature distance from the critical point, we found that the sound attenuation follows the power laws α(ω,ε)~ω2ε-1 and α(ω,ε)~ω0ε1 in the low- and high-frequency regions, while ε→0. Finally, a comparison of the findings of this study with previous theoretical and experimental studies is presented and it is shown that a good agreement is found with our results.


Sign in / Sign up

Export Citation Format

Share Document