Self-aligned CH3NH3PbBr3 perovskite nanowires via dielectrophoresis for gas sensing applications

2022 ◽  
Vol 26 ◽  
pp. 101307
Author(s):  
Artavazd Kirakosyan ◽  
Moon Ryul Sihn ◽  
Min-Gi Jeon ◽  
Rezaul M.D. Kabir ◽  
Jihoon Choi
2019 ◽  
Vol 11 (5) ◽  
pp. 05040-1-05040-4
Author(s):  
Sumanta Kumar Tripathy ◽  
◽  
Sanjay Kumar ◽  
Divya Aparna Narava ◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


2021 ◽  
Author(s):  
Yushu Shi ◽  
Huiyan Xu ◽  
Tongyao Liu ◽  
Shah Zeb ◽  
Yong Nie ◽  
...  

The scheme of the structure of this review includes an introduction from the metal oxide nanomaterials’ synthesis to application in H2 gas sensors—a vision from the past to the future.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2123
Author(s):  
Ming Liu ◽  
Caochuang Wang ◽  
Pengcheng Li ◽  
Liang Cheng ◽  
Yongming Hu ◽  
...  

Many low-dimensional nanostructured metal oxides (MOXs) with impressive room-temperature gas-sensing characteristics have been synthesized, yet transforming them into relatively robust bulk materials has been quite neglected. Pt-decorated SnO2 nanoparticles with 0.25–2.5 wt% Pt were prepared, and highly attractive room-temperature hydrogen-sensing characteristics were observed for them all through pressing them into pellets. Some pressed pellets were further sintered over a wide temperature range of 600–1200 °C. Though the room-temperature hydrogen-sensing characteristics were greatly degraded in many samples after sintering, those samples with 0.25 wt% Pt and sintered at 800 °C exhibited impressive room-temperature hydrogen-sensing characteristics comparable to those of their counterparts of as-pressed pellets. The variation of room-temperature hydrogen-sensing characteristics among the samples was explained by the facts that the connectivity between SnO2 grains increases with increasing sintering temperature, and Pt promotes oxidation of SnO2 at high temperatures. These results clearly demonstrate that some low-dimensional MOX nanocrystals can be successfully transformed into bulk MOXs with improved robustness and comparable room-temperature gas-sensing characteristics.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4425
Author(s):  
Ana María Pineda-Reyes ◽  
María R. Herrera-Rivera ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Dora I. Medina

Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing.


2020 ◽  
Vol 1695 ◽  
pp. 012124
Author(s):  
A Elmanova ◽  
P An ◽  
V Kovalyuk ◽  
A Golikov ◽  
I Elmanov ◽  
...  

2005 ◽  
Vol 111-112 ◽  
pp. 247-253 ◽  
Author(s):  
Jorge Amírola ◽  
Angel Rodríguez ◽  
Luis Castañer ◽  
J.P. Santos ◽  
J. Gutiérrez ◽  
...  

2012 ◽  
Vol 107 (4) ◽  
pp. 899-904 ◽  
Author(s):  
I. Fasaki ◽  
M. Kandyla ◽  
M. Kompitsas

Sign in / Sign up

Export Citation Format

Share Document