Effects of high-speed spin on the reacting flow of drag reduction equipment under rapid depressurization

Author(s):  
Shupei Zhou ◽  
Yonggang Yu
2021 ◽  
Vol 11 (2) ◽  
pp. 784
Author(s):  
Zhenxu Sun ◽  
Shuanbao Yao ◽  
Lianyi Wei ◽  
Yongfang Yao ◽  
Guowei Yang

The structural design of the streamlined shape is the basis for high-speed train aerodynamic design. With use of the delayed detached-eddy simulation (DDES) method, the influence of four different structural types of the streamlined shape on aerodynamic performance and flow mechanism was investigated. These four designs were chosen elaborately, including a double-arch ellipsoid shape, a single-arch ellipsoid shape, a spindle shape with a front cowcatcher and a double-arch wide-flat shape. Two different running scenes, trains running in the open air or in crosswind conditions, were considered. Results reveal that when dealing with drag reduction of the whole train running in the open air, it needs to take into account how air resistance is distributed on both noses and then deal with them both rather than adjust only the head or the tail. An asymmetrical design is feasible with the head being a single-arch ellipsoid and the tail being a spindle with a front cowcatcher to achieve the minimum drag reduction. The single-arch ellipsoid design on both noses could aid in moderating the transverse amplitude of the side force on the tail resulting from the asymmetrical vortex structures in the flow field behind the tail. When crosswind is considered, the pressure distribution on the train surface becomes more disturbed, resulting in the increase of the side force and lift. The current study reveals that the double-arch wide-flat streamlined design helps to alleviate the side force and lift on both noses. The magnitude of side force on the head is 10 times as large as that on the tail while the lift on the head is slightly above that on the tail. Change of positions where flow separation takes place on the streamlined part is the main cause that leads to the opposite behaviors of pressure distribution on the head and on the tail. Under the influence of the ambient wind, flow separation occurs about distinct positions on the train surface and intricate vortices are generated at the leeward side, which add to the aerodynamic loads on the train in crosswind conditions. These results could help gain insight on choosing a most suitable streamlined shape under specific running conditions and acquiring a universal optimum nose shape as well.


Author(s):  
Lianzheng Cui ◽  
Zuogang Chen ◽  
Yukun Feng

The drag reduction effect of interceptors on planning boats has been widely proven, but the mechanism of the effect has been rarely studied in terms of drag components, especially for spray resistance. The resistance was caused by the high gauge pressure under the boats transformed from the dynamic pressure, and it is the largest drag component in the high-speed planning mode. In this study, numerical simulations of viscous flow fields around a planning boat with and without interceptors were conducted. A two degrees of freedom motion model was employed to simulate the trim and sinkage. The numerical results were validated against the experimental data. The flow details with and without the interceptor were visualized and compared to reveal the underlying physics. A thinner and longer waterline could be achieved by the interceptor, which made the boat push the water away more gradually, and hence, the wave-making resistance could be decreased. The improved waterline also reduced the component of the freestream normal to the hull surface and led to the less transformed dynamic pressure, resulting in the lowAer spray resistance. Furthermore, the suppression of the flow separation could also be benefited from the interceptor; the viscous pressure resistance was therefore decreased.


2013 ◽  
Vol 477-478 ◽  
pp. 240-245
Author(s):  
Xiaohui Guan

Bi-directional Flying Wing (BFW) is a new supersonic civil transport shape concept that aims to meet the conflict requirements of high speed cruise and low speed take-off/landing missions. In this paper the Class-Shape-Transformation (CST) shape parameterization method is modified to represent the BFW shape, and new basis functions suitable for the BFW airfoil representation are constructed. The Far-field Composite Element (FCE) wave drag optimization is performed on both the flat bottom and symmetric BFW configurations, and the drag reduction effects and result precision are surveyed. It is suggested that significant wave drag reduction can be achieved by the FCE optimization for both the flat bottom and the symmetric BFW configurations. The wave drag coefficients with sufficient precision can be obtained in the FCE optimization of the symmetric configuration; while the FCE optimization results of the flat bottom one are not accurate enough.


Author(s):  
Yasmin Khakpour ◽  
Miad Yazdani

In this work, numerical simulation is used to study the stability enhancement of high speed supercavitating hydrofoils. Although supercavitation is known as one of the most effective methods for drag reduction, producing the cavity, either by ventilation or by cavitator at front of the body, may cause some instabilities on cavity surface and thus on the projectile’s motion. Therefore removing these instabilities comes as an important point of discussion. First of all, we calculate the sources of instabilities and measure respective forces and then present some approaches that significantly reduce these instabilities. One of these methods that could produce more stable supercavities is injecting of the air into the cavity unsteadily which varies through the projectile’s surface. This approach is provided by arrays of slots distributed on the projectile’s surface and unsteady injection is modeled over the surface. Furthermore, the position of ventilation, dramatically affects the stability like those in aerodynamics. In all approaches it is assumed that the supercavity covers the whole of the body, however the forces caused by the wakes, formed behind the body are taken into account. The calculation is performed at three cavitation numbers with respective velocities of 40 m/s, 50 m/s, 60 m/s.


2018 ◽  
Vol 842 ◽  
pp. 381-394 ◽  
Author(s):  
Marco E. Rosti ◽  
Luca Brandt ◽  
Alfredo Pinelli

The effect of the variations of the permeability tensor on the close-to-the-wall behaviour of a turbulent channel flow bounded by porous walls is explored using a set of direct numerical simulations. It is found that the total drag can be either reduced or increased by more than 20 % by adjusting the permeability directional properties. Drag reduction is achieved for the case of materials with permeability in the vertical direction lower than the one in the wall-parallel planes. This configuration limits the wall-normal velocity at the interface while promoting an increase of the tangential slip velocity leading to an almost ‘one-component’ turbulence where the low- and high-speed streak coherence is strongly enhanced. On the other hand, strong drag increase is found when high wall-normal and low wall-parallel permeabilities are prescribed. In this condition, the enhancement of the wall-normal fluctuations due to the reduced wall-blocking effect triggers the onset of structures which are strongly correlated in the spanwise direction, a phenomenon observed by other authors in flows over isotropic porous layers or over ribletted walls with large protrusion heights. The use of anisotropic porous walls for drag reduction is particularly attractive since equal gains can be achieved at different Reynolds numbers by rescaling the magnitude of the permeability only.


2021 ◽  
Author(s):  
Qianpeng Zhao ◽  
Yong Mu ◽  
Jinhu Yang ◽  
Yulan Wang ◽  
Gang Xu

Abstract The sub-atmospheric ignition performance of an SPP (Stratified Partially Premixed) injector and combustor is investigated experimentally on the high-altitude test facility. In order to explore the influence of sub-atmospheric pressure on reignition performance and flame propagation mode, experiments are conducted under different pressures ranging from 19 kPa to 101 kPa. The inlet temperature and pressure drop of the injector (ΔPsw/P3t) are kept constant at 303 K and 3% respectively. The transparent quartz window mounted on the sidewall of the model combustor provides optical access of flame signals. Ignition fuel-air ratio (FAR) under different inlet pressures are experimentally acquired. The spark ignition processes, including the formation of flame kernel, the flame development and stabilization are recorded by a high-speed camera at a rate of 5kHz. Experimental results indicate that the minimum ignition FAR grows rapidly as the inlet air pressure decreases. An algorithm is developed to track the trajectory of flame kernels within 25ms following the spark during its breakup and motion processes. Results show that the calculated trajectory provides a clear description of the flame evolution process. Under different inlet air pressures, the propagation trajectories of flame kernels share similarities in initial phase. It is pivotal for a successful ignition that the initial flame kernel keeps enough intensity and moves into CTRZ (Center-Toroidal Recirculation Zone) along radial direction. Finally, the time-averaged non-reacting flow field under inlet pressure of 54kPa and fuel mass flow of 8kg/h is simulated. The effects of flow structure and fuel spatial distribution on kernel propagation and flame evolution are analyzed.


Author(s):  
Alexander L. Brown ◽  
Kurt E. Metzinger

Transportation accidents frequently involve liquids dispersing in the atmosphere. An example is that of aircraft impacts, which often result in spreading fuel and a subsequent fire. Predicting the resulting environment is of interest for design, safety, and forensic applications. This environment is challenging for many reasons, one among them being the disparate time and length scales that must be resolved for an accurate physical representation of the problem. A recent computational method appropriate for this class of problems has been developed for modeling the impact and subsequent liquid spread. This involves coupling a structural dynamics code to a turbulent computational fluid mechanics reacting flow code. Because the environment intended to be simulated with this capability is difficult to instrument and costly to test, the existing validation data are of limited scope, relevance, and quality. A rocket sled test is being performed where a scoop moving through a water channel is being used to brake a pusher sled. We plan to instrument this test to provide appropriate scale data for validating the new modeling capability. The intent is to get high fidelity data on the break-up and evaporation of the water that is ejected from the channel as the sled is braking. These two elements are critical to fireball formation for this type of event involving fuel in the place of water. We demonstrate our capability in this paper by describing the pre-test predictions which are used to locate instrumentation for the actual test. We also present a sensitivity analysis to understand the implications of length scale assumptions on the prediction results.


Author(s):  
Srikanth B. Pidugu

The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.


SIMULATION ◽  
2018 ◽  
Vol 95 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Rui Zhang ◽  
Dianlei Han ◽  
Yuan He ◽  
Haijin Wan ◽  
Songsong Ma ◽  
...  

The ostrich has a steady and enduring high-speed running ability. Toenails are one key part of ostrich feet and their unique morphology is crucial in insertion into sand and for traction provision. In this study, information of bionic curves was extracted through studying the toenail structure and morphology, and three-dimensional reconstruction of toenails by reverse engineering. Based on the principle of bionic engineering, a bionic shovel was designed by optimizing the traditional shovel. A shovel–soil interaction mechanical model was established via the discrete element method. The insertion into soil processes of the bionic shovel and the common plate were simulated. The dynamic mesoscopic mechanical behaviors of soil particles around the shovel surface, the contact force field, and the velocity field, as well as the forces acting on the shovel surface were analyzed. The bionic shovel outperformed the common plate in insertion. The main reason for drag reduction in the bionic shovel was the inner concave bending surface, along which the soil particles climbed, and the particle movement trend was consistent. Simulations showed stress concentrated at the tip of the shovel, which facilitated the production of fatigue wear. Therefore, the tip needs to be considered firstly during bionic shovel design in the future.


Sign in / Sign up

Export Citation Format

Share Document