Impact of vineyard cover cropping on carbon dioxide and nitrous oxide emissions in Portugal

2018 ◽  
Vol 9 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Francisco J.M. Marques ◽  
Vanda Pedroso ◽  
Henrique Trindade ◽  
José L.S. Pereira
2021 ◽  
Vol 156 ◽  
pp. 108197
Author(s):  
Hollie E. Emery ◽  
John H. Angell ◽  
Akaash Tawade ◽  
Robinson W. Fulweiler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


2014 ◽  
Vol 78 (5) ◽  
pp. 1694-1706 ◽  
Author(s):  
Joseph O. Storlien ◽  
Frank M. Hons ◽  
Jason P. Wight ◽  
James L. Heilman

Author(s):  
Haojie Liu ◽  
Nicole Wrage-Mönnig ◽  
Bernd Lennartz

Abstract Nitrous oxide (N2O) is approximately 265 times more potent than carbon dioxide (CO2) in atmospheric warming. Degraded peatlands are important sources of N2O. The more a peat soil is degraded, the higher the N2O-N emissions from peat. In this study, soil bulk density was used as a proxy for peat degradation to predict N2O-N emissions. Here we report that the annual N2O-N emissions from European managed peatlands (EU-28) sum up to approximately 145 Gg N year−1. From the viewpoint of greenhouse gas emissions, highly degraded agriculturally used peatlands should be rewetted first to optimally reduce cumulative N2O-N emissions. Compared to a business-as-usual scenario (no peatland rewetting), rewetting of all drained European peatlands until 2050 using the suggested strategy reduces the cumulative N2O-N emissions by 70%. In conclusion, the status of peat degradation should be made a pivotal criterion in prioritising peatlands for restoration.


CATENA ◽  
2020 ◽  
Vol 195 ◽  
pp. 104912 ◽  
Author(s):  
Yongxiang Yu ◽  
Xing Li ◽  
Chengyi Zhao ◽  
Ningguo Zheng ◽  
Hongtao Jia ◽  
...  

Author(s):  
Syeda Anam Hassan ◽  
Misbah Nosheen

No one can deny the progression and innovation in the aviation transportation collected at national and international level. But the accountancy of the impact of air transportation on environmental degradation is naive and emerging trend of the current era. The air transportation versus environment is the key contribution to the literature that is solely conducted for Pakistan first time in this context. The objective of this research is to compute the impact of air transportation on carbon dioxide emissions, nitrous emissions and methane emissions separately in the three models by applying ARDL bound test approach during 1990 to 2017. The result depicts significant and positive relation of air transportation (carriage) to carbon dioxide emissions (0.77), nitrous emissions (0.20) and methane emissions (0.38) in long-run. The short-run results infer that the air transportation (passenger) has significantly positive relation to carbon dioxide emissions (0.278), nitrous emissions (0.207), and methane emissions (0.080). The econometric outcomes show the significant and direct relation to transportation (both passenger and cargo) to carbon dioxide, methane, and nitrous oxide emissions in short and long-run. Moreover, per capita GDP, population density, and energy demand also significantly affect the environment showing significant and positive coefficients to all three categories (carbon dioxide, methane, and nitrous oxide) of emission. In case of Pakistan, FDI and trade for this duration didn’t significantly contribute to the CO2, NO2, and methane emissions. Since the last decade the economic issues of Pakistan like terrorism, political instability, energy crises, and poor management along with the worst performance by tertiary sectors have severely hit the economy, and as a result, the FDI and trade sector has tormented in a substantial proportion. Finally, pairwise Granger causation also supports the short and long-run consequences. The outcomes suggested that the fuel-efficient energy use and technological diversification in the transportation sector are essential to mitigate the degrading environmental emissions.


Sign in / Sign up

Export Citation Format

Share Document