scholarly journals The long-circulating effect of pegylated nanoparticles revisited via simultaneous monitoring of both the drug payloads and nanocarriers

Author(s):  
Wufa Fan ◽  
Haixia Peng ◽  
Zhou Yu ◽  
Luting Wang ◽  
Haisheng He ◽  
...  
2018 ◽  
Vol 513 ◽  
pp. 205-213 ◽  
Author(s):  
Maelle Monteil ◽  
Hanane Moustaoui ◽  
Gennaro Picardi ◽  
Fatima Aouidat ◽  
Nadia Djaker ◽  
...  

2014 ◽  
Vol 490-491 ◽  
pp. 123-128 ◽  
Author(s):  
Nishka Ranjan ◽  
A.H. Manjunatha Reddy

The last two decades have witnessed a plethora of novel biomaterials that work significantly in the discovery of drugs and the point check of drugs, Biosensors. PLGA (Poly-(L-Lactide-co-glycolic Acid)), has already been shown to be a substrate for manufacture of substrates for OFETs, that in the future would be the forefront of electroceuticals. But, Polylactic Acid (PLA) derived and pegylated nanoparticles generated scaffolds, promote neural self-differentiation, nanowires derived from Polythiophene (PTs) can be utilised in the area of biosensors. Similarly, PT derived PEDOT:PSS(poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) polymer doped with appropriate cations is useful to manipulate directly the biological response of cells on the same grounds, organic electrochemical transistors (OECTs) based on PEDOTPSS coupled with bilayer lipid membranes (BLMs) were shown to act as ion-to-electron converters. A solid-state ion bipolar junction transistor (IBJT) has been developed to serve as a circuit element for neurotransmitter signal delivery. Consequently, the traditional drug discovery methods have far gone by. This era demands a much more modified and multiple disciplined methods for modern drug discovery. This review gives an insight and instance of this paradigm.


2010 ◽  
Vol 32 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Guillaume Delaittre ◽  
Gemma Justribó-Hernández ◽  
Roeland J. M. Nolte ◽  
Jeroen J. L. M. Cornelissen

2017 ◽  
Vol 53 (62) ◽  
pp. 8790-8793 ◽  
Author(s):  
Lei Xing ◽  
Jin-Yuan Lyu ◽  
Yue Yang ◽  
Peng-Fei Cui ◽  
Liu-Qing Gu ◽  
...  

The self-assembled nanosystem formulated with amphiphilic TPP–Que and PBA–PEG through a coordination bond could balance the dilemma of PEGylation.


Author(s):  
Abdorreza Asrar ◽  
Zahra Sobhani ◽  
Mohammad Ali Behnam

Purpose: Photothermal therapy is a procedure that converts laser beam energy to heat so can disturb tumor cells. Carbon nanotubes (CNTs) have unique properties in absorption optical energy and could change optical power into heat in photothermal therapy procedures. Additionally, titanium dioxide (TiO2) NPs have a unique feature in absorbing and scattering light. Therefore, these mentioned NPs could play a synergistic role in the photothermal therapy method. Methods: CNTs and TiO2 NPs were injected into the melanoma tumor sites of cancerous mice. Then sites were excited using the laser beam (λ= 808nm, P= 2W, and I= 4W/cm2). Injected NPs caused hyperthermia in solid tumors. Tumor size assay, statistical analysis, and histopathological study of the treated cases were performed to assess the role of mentioned NPs in photothermal therapy of murine melanoma cancer. Results: The results showed that CNTs performed better than TiO2 NPs in destroying murine melanoma cancer cells in animals. Conclusion: The present study compared the photothermal activity of excited CNTs and TiO2 NPs in cancer therapy at the near-infrared spectrum of light. Tumors were destroyed selectively because of their weakened heat resistance versus normal tissue. Photothermal therapy of malignant melanoma through CNTs caused remarkable necrosis into the tumor tissues versus TiO2 NPs.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2022
Author(s):  
Xiangjie Su ◽  
Mercedes Ramírez-Escudero ◽  
Feilong Sun ◽  
Joep B. van den Dikkenberg ◽  
Mies J. van Steenbergen ◽  
...  

The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles’ ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuan-Chin Hsieh ◽  
Ta-Chun Cheng ◽  
Hsin-Ell Wang ◽  
Jia-Je Li ◽  
Wen-Wei Lin ◽  
...  

2018 ◽  
Vol 115 (19) ◽  
pp. 4903-4908 ◽  
Author(s):  
Hong-Xia Wang ◽  
Ziyuan Song ◽  
Yeh-Hsing Lao ◽  
Xin Xu ◽  
Jing Gong ◽  
...  

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.


2021 ◽  
Vol 66 ◽  
pp. 85-102
Author(s):  
Wen Kai Liu ◽  
Yuan Qing Song ◽  
Yan Ma ◽  
Xin Li ◽  
Peng Chen ◽  
...  

A series of PEGylated active carbon nanoparticles were fabricated with improved dispersity in water and were explored for their ability for carrying drugs and potential application in lymphatic targeted tracing and chemotherapy of colorectal cancer. The active carbon nanoparticles were oxidized in a mild condition with 30% H2O2 solution and then mPEG-NH2 was grafted to the nanoparticles. Compared with the original carbon nanoparticles, the oxidized and PEGylated nanoparticles all present improved stability and initial solubility in water and the PEGylated nanoparticles perform best. Size of the nanoparticles was well controlled in a rational area which can fulfill the requirement for lymphatic targeting. The PEGylated nanoparticles have excellent drug loading properties and allow for sustained release under physiological conditions. The MTT results show the drug-loaded nanoparticles can effectively kill SW480 cells (Human Colon Cancer Cells). These characteristics make the PEGylated nanoparticles become a promising candidate for using as drug-loaded powder for both lymphatic targeted tracing and chemo-therapy without using suspending agent in tumor treatment.


Author(s):  
Ahmed A Abd-rabou ◽  
Hanaa H Ahmed ◽  
Mohamed S Kishta

Objective: Chemokine (C-C motif) ligand 2 (CCL2), a candidate of cytokines, orchestrates immune cell recruitment to inflamed organs. CCL2 has been shown to have direct angiogenic effects, so providing an anti-angiogenic agent, Avastin (AV), to be combined with the CCR2 antagonist (concentration ratio [CR]) plays an essential role in the hemostatic strategy for immunomodulation. Lack of targetability and the adverse effects of chemical treatments are the main obstacles led scientists to develop novel strategies using nano-delivery approaches such as pegylated nanoparticles (NPs) which exhibits reduced drug clearance rates. The rationale of the current study is to test the in vivo immunomodulatory effects of AV and/or CR in their NPs or free counterparts.Methods: These NPs were synthesized and characterized using different physicochemical techniques. Males Wistar rats (n=114) were used and divided into 7 groups treated with vehicle, AV, AVNP, CCR2 antagonist (CR), CCR2 antagonist NPs (CRNP), AV-CCR2 antagonist (AVCR), and AV-CCR2 antagonist NPs (AVCRNP). Groups were subdivided into three subgroups according to the administrated dose. Blood was taken from rats for differential leukocyte and platelet profile measurements. Sera were collected to test vascular endothelial growth factor (VEGF) levels. Autopsy samples from liver were taken for histopathological investigation.Results: The morphology of the NPs was spherical and had sizes ranging from 89.89 nm to 146 nm. Monocytes and lymphocytes accumulated in the blood circulation and VEGF levels were inhibited after AV and CR administrations. In addition, large platelets concentration ratio was elevated in the blood circulation.Conclusion: We concluded that AV ad CR therapeutic regimens have an immunomodulatory role through induction of monocyte-platelet aggregation and inhibition of VEGF.


Sign in / Sign up

Export Citation Format

Share Document