Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method

2005 ◽  
Vol 249 (1-4) ◽  
pp. 266-270 ◽  
Author(s):  
Xingwei Li ◽  
Xiaoxuan Li ◽  
Gengchao Wang
2010 ◽  
Vol 178 ◽  
pp. 236-241
Author(s):  
Jing Xie ◽  
Shang Yue Shen ◽  
Yu Xia Luo ◽  
Meng Meng Zhang ◽  
Ying Chen

Epoxy resin/ montmorillonite (EP/MMT) composite was prepared via monomer insert in-situ polymerization. It was shown that the EP/MMT composites could be successfully synthesized from the raw materials only by one step, making it simpler than traditional in-situ intercalative polymerization method. The d001 spacing of montmorillonite was tested by XRD and increased to 4.30nm. The results showed that tensile strength and impact strength were improved by 98.11 and 93.69%, respectively. The glass transition temperature was increased by 17.3 °C.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 49448-49458 ◽  
Author(s):  
Jiaojiao Ma ◽  
Ying Li ◽  
Xiande Yin ◽  
Yu Xu ◽  
Jia Yue ◽  
...  

A novel and one-stepin situpolymerization method for preparing the poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposites.


2009 ◽  
Vol 66 ◽  
pp. 230-233 ◽  
Author(s):  
Tao Wei ◽  
Zhi Xiong Huang ◽  
Guo Rui Yang ◽  
Min Xian Shi

The PANI/PMN composite was prepared by one-step in-situ polymerization method and was characterized via FT-IR, XRD, SEM and TG. The results indicate that the best reaction conditions of in-situ polymerization are 0°C/24h.The PMN powder are entirely coated with PANI, when composite contains more than 60% PANI by volume. The steric hindrance effect of PMN powder decreases the crystallization degree of PANI which polymerizes on the surface of PMN powder in the process of in-situ polymerization. The main weight loss occurring between 300 and 480°C corresponds to the degradation of the PANI polymer chain.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Ana-Maria Mocioiu ◽  
Ioan Albert Tudor ◽  
Oana Cătălina Mocioiu

“In situ” polymerization method was used to develop PANI-PSSA /textile. Polyaniline doped with polystyrene sulfonic acid (PANI-PSSA) used as coatings for textiles were obtained by aqueous and emulsion route. The emulsion route uses chloroform as solvent. Polymerization has been achieved in one step on the wool or polyamide textiles. For coated and uncoated textiles, dried at room temperature, were characterized structurally by Infrared Spectroscopy with Attenuated Total Reflectance (ATR), morphologically by Scanning Electron Microscopy (SEM), and by Atomic Force Microscopy (AFM) and electrically. The synthesis methods lead to differences in structure, morphology and properties of the coated polyamide and wool textiles.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2019 ◽  
Vol 361 ◽  
pp. 897-907 ◽  
Author(s):  
Jingchun Lv ◽  
Peiwen Zhou ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Xiaofeng Sui ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


Sign in / Sign up

Export Citation Format

Share Document