Texture of YBCO layer grown on GaN/c-sapphire substrates

2021 ◽  
Vol 543 ◽  
pp. 148718
Author(s):  
E. Dobročka ◽  
M. Španková ◽  
M. Sojková ◽  
Š. Chromik
1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
J. E. O'Neal ◽  
J. J. Bellina ◽  
B. B. Rath

Thin films of the bcc metals vanadium, niobium and tantalum were epitaxially grown on (0001) and sapphire substrates. Prior to deposition, the mechanical polishing damage on the substrates was removed by an in-situ etch. The metal films were deposited by electron-beam evaporation in ultra-high vacuum. The substrates were heated by thermal contact with an electron-bombarded backing plate. The deposition parameters are summarized in Table 1.The films were replicated and examined by electron microscopy and their crystallographic orientation and texture were determined by reflection electron diffraction. Verneuil-grown and Czochralskigrown sapphire substrates of both orientations were employed for each evaporation. The orientation of the metal deposit was not affected by either increasing the density of sub-grain boundaries by about a factor of ten or decreasing the deposition rate by a factor of two. The results on growth epitaxy are summarized in Tables 2 and 3.


Author(s):  
Lisa A. Tietz ◽  
Scott R. Summerfelt ◽  
C. Barry Carter

Defects in thin films are often introduced at the substrate-film interface during the early stages of growth. The interface structures of semiconductor heterojunctions have been extensively studied because of the electrical activity of defects in these materials. Much less attention has been paid to the structure of oxide-oxide heterojunctions. In this study, the structures of the interfaces formed between hematite (α-Fe2O3) and two orientations of sapphire (α-Al2O3) are examined in relationship to the defects introduced into the hematite film. In such heterojunctions, the oxygen sublattice is expected to have a strong influence on the epitaxy; however, defects which involve only the cation sublattice may be introduced at the interface with little increase in interface energy.Oxide heterojunctions were produced by depositing small quantities of hematite directly onto electrontransparent sapphire substrates using low-pressure chemical vapor deposition. Prior to deposition, the ionthinned substrates were chemically cleaned and annealed at 1400°C to give “clean”, crystalline surfaces. Hematite was formed by the reaction of FeCl3 vapor with water vapor at 1150°C and 1-2 Torr. The growth of the hematite and the interface structures formed on (0001) and {102} substrates have been studied by bright-field, strong- and weak-beam dark-field imaging techniques.


2005 ◽  
Vol 892 ◽  
Author(s):  
Vitali Sukhoveev ◽  
Alexander Usikov ◽  
Oleg Kovalenkov ◽  
Vladimir Ivantsov ◽  
Alexander Syrkin ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikolaj Grabowski ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Artur Lachowski ◽  
Julita Smalc-Koziorowska ◽  
...  

AbstractThe aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.


2021 ◽  
pp. 149725
Author(s):  
Pengkun Li ◽  
Lilin Wang ◽  
Shujing Sun ◽  
Chaoyang Tu ◽  
Chenlong Chen

2021 ◽  
Vol 126 ◽  
pp. 105660
Author(s):  
Lifeng Rao ◽  
Xiong Zhang ◽  
Aijie Fan ◽  
Shuai Chen ◽  
Cheng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document