Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2

2021 ◽  
Vol 32 (3) ◽  
pp. 866-874 ◽  
Author(s):  
Martins O. Omorogie ◽  
Jonathan O. Babalola ◽  
Muhsinah O. Ismaeel ◽  
James D. McGettrick ◽  
Trystan M. Watson ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5667
Author(s):  
Priyanka Shrestha ◽  
Manoj Kumar Jha ◽  
Jeevan Ghimire ◽  
Agni Raj Koirala ◽  
Rajeshwar Man Shrestha ◽  
...  

Zinc oxide (ZnO) nanorods incorporated activated carbon (AC) composite photocatalyst was synthesized using a hydrothermal process. The AC was prepared from lapsi (Choerospondias axillaris) seed stone, an agricultural waste product, found in Nepal by the chemical activation method. An aqueous suspension of AC with ZnO precursor was subjected to the hydrothermal treatment at 140 °C for 2 h to decorate ZnO rods into the surface of AC. As-obtained ZnO nanorods decorated activated carbon (ZnO/AC) photocatalyst was characterized by various techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy. Results showed that highly crystalline hexagonal ZnO nanorods were effectively grown on the surface of porous AC. The photocatalytic property of the as-prepared ZnO/AC composite was studied by degrading methylene blue (MB) dye under UV-light irradiation. The ZnO/AC composite showed better photocatalytic property than that of the pristine ZnO nanorods. The enhanced photocatalytic performance in the case of the ZnO/AC composite is attributed to the combined effects of ZnO nanorods and AC.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Zaniah Ishak ◽  
Sa’diah Salim ◽  
Dilip Kumar

One of the most environmentally friendly methods to treat wastewater, especially synthetic dyes, is the production of activated carbon from agricultural waste. Tamarind seeds were transformed from negative-value waste into activated carbon in order to study the removal of synthetic dyes. The particular agro waste was soaked in ZnCl2 for chemical activation to increase its surface area and enhance its porosity. Physical activation of tamarind seeds was done by the carbonization process by burning at a temperature of 300 °C for 1 hour and cooling for 24 hours before washing with HCL to activate a pore surface for the tamarind seeds' carbon. The effects of parameters related to the adsorption of the dyes by tamarind seed activated carbon, such as contact time, initial concentration, absorbance dosage, and pH, were studied. The experimental data found that adsorption on both synthetic dyes exhibited a Langmuir isotherm in which the correlation value, R2, was 0.9227 (methylene blue) and 0.6117 (Reactive black 5). Meanwhile, the rate of adsorption for methylene blue (MB) and Reactive black 5 (RB5) by tamarind seed activated carbon was found to be well fitted in a pseudo-second-order model. More research is needed to meet the standard effluent of dyeing wastewater from the industrial sector.


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
E. Sahara ◽  
D. E. Permatasaari ◽  
I W. Suarsa

The agricultural waste of gumitir plants stem can be used as an ingredient in producing an activated carbon. Some researchers have reported that the additions of phosphoric acid and NaOH as chemical activators have resulted in an activated carbon that met the SNI (Indonesian National Standard) 06-3730-1995 about technical activated carbon. The purpose of this study was to produce and characterize the activated carbon from the stem of gumitir plants carbonized at 300oC for 90 minutes with the use of ZnCl2 as the activator. The activation was carried out by adding ZnCl2 to an amount of carbon in various mole ratios. The characteristics of the activated carbon obtained were compared to the SNI. It was evident that the addition of 0.1 mole of ZnCl2 to 1 gram of the carbon produced an activated carbon that met the SNI standard, namely, water content of 5.00%, as content of 8.33%, volatile content of 950oC of heating  of  7.36%, carbon content of 79,30%, iodine absorption capacity of 788.1271 mg/g, and methylene blue absorption capacity of 260.7917 mg/g. The surface area and surfae acidity of this carbon was of 677,6270 mg2/g and 0.3396 mmol/g, respectively. The functional group analysis of this activated carbon showed the presence of O-H, COOH, C-O aldehyde, alkaline C-C and C-H groups.


2021 ◽  
Vol 3 (2) ◽  
pp. 73-79
Author(s):  
Aninda Tifani Puari

Activated carbon (AC) from agricultural waste has become one promising way to produce AC regarding to low price of the precursor and its effect to environment. In this research, the solid waste from the basic biology practical in UPT. Basic and Central Laboratory, Andalas University (Unand) was utilized as the precursor for producing low price AC. The activation was done by chemical activation using three different activating agents which were zink chloride (ZnCl2), phosphoric acid (H3PO4), potassium hydroxide (KOH). The carbonization process was done at temperature of 700°C. The precursor and three different AC after activation were characterized using fourier-transform infrared spectroscopy (FT-IR) to examine  the functional group and scanning electron microscope (SEM) to observe the pores structure. The adsorption efficiency (AE) of each AC on methylene blue (MB) contained in laboratory wastewater was examined through adsorption process with retention time of 30 minutes at room temperature and neutral pH. SEM analysis showed that the three activating agents were resulting in higher surface area and more pores were formed. The highest AE of MB from laboratory wastewater for each AC were 97,5 %, 96,31%, and 90,79 for KOH, , ZnCl2, and H3PO4, respectively. Meanwhile, the highest adsorption capacity was achieved by AC through KOH activation with 0,003 mg/g


2021 ◽  
Vol 19 (5) ◽  
pp. 521-539
Author(s):  
Diego Montenegro Quesada ◽  
Natalia Montero Rambla ◽  
Rodolfo Antonio Hernández Chaverri ◽  
Johanna Méndez Arias

The objective of this work was to produce activated carbon from the agricultural waste known as pineapple stubble, and to test its effectiveness in the removal of methylene blue and surfactants. Activated carbon was prepared using ZnCl2 and H3PO4 as activating agents and impregnation ratios of 2: 1 and 4:1 between the agent (mL) and the precursor (g) were evaluated. It was also investigated the need or not of a drying stage prior to carbonization. The produced activated carbon was characterized through FT-IR spectroscopy, X-ray fluorescence, N2 physisorption analysis, elemental analysis and electron microscopy. Methylene blue adsorption tests were performed to determine the adsorption effectiveness of the different activated carbons produced. For such evaluation, a 23 factorial design was used, and statistical analysis determined that the activated carbon with the highest adsorption of methylene is produced under the following conditions: ZnCl2 as activating agent, an impregnation ratio of 4:1 and with no drying step prior to carbonization. This produced activated carbon is also effective in the adsorption of the surfactant sodium dodecyl sulfate and for the surfactants present in the gray water obtained after washing clothes with commercial detergent. In these cases, removal efficiencies above 98 % were achieved. With respect to the characteristics of this activated carbon, it was observed a surface area of ​​685.5 m2/g, a total pore volume of 0.53 cm3/g, and an average pore diameter of 3.1 nm. Results achieved in the present study demonstrate that is possible to produce effective activated carbon for the removal of methylene blue and surfactants from an agricultural waste such as pineapple stubble.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Sign in / Sign up

Export Citation Format

Share Document