CFD numerical simulation on diffusion and distribution of diesel exhaust particulates in coal mine heading face

Author(s):  
Jinjie Duan ◽  
Gang Zhou ◽  
Yang Yang ◽  
Bin Jing ◽  
Shengyong Hu
2016 ◽  
Vol 9 (1) ◽  
pp. 47-54
Author(s):  
Jing Shen ◽  
Mingran Chang

One of the main reasons for coal mine fire is spontaneous combustion of residual coal in gob. As the difference of compaction degree of coal and rock, the underground gob can be considered as a porous medium and divided into “three zones” in accordance with the criteria. The “three zones” are “heat dissipation zone”, “oxidation zone” and “choking zone”, respectively. Temperature programming experiments are taken and numerical simulation with obtained experimental data is utilized to analyze the distribution of “three zones” in this paper. Different width and depth of “oxidation zone” are obtained when the inlet air velocity is changed. As the nitrogen injection has inhibition effect on spontaneous combustion of residual coal in gob, nitrogen is injected into the gob. The widths of “oxidation zone” are compared before and after nitrogen injection. And ultimately the optimum location and volume of nitrogen injection are found out.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2010 ◽  
pp. 481-484
Author(s):  
Nie Baisheng ◽  
Zhai Shengrui ◽  
Zhang Ruming ◽  
Jia Chuan ◽  
Zhang Jufeng

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6548
Author(s):  
Peng Liao ◽  
Jiyang Fu ◽  
Wenyong Ma ◽  
Yuan Cai ◽  
Yuncheng He

According to the engineering phenomenon of the galloping of ice-coated transmission lines at certain wind speeds, this paper proposes a novel type of energy harvester based on the galloping of a flexible structure. It uses the tension generated by the galloping structure to cause periodic strain on the piezoelectric cantilever beam, which is highly efficient for converting wind energy into electricity. On this basis, a physical model of fluid–structure interaction is established, and the Reynolds-averaged Navier–Stokes equation and SST K -ω turbulent model based on ANSYS Fluent are used to carry out a two-dimensional steady computational fluid dynamics (CFD) numerical simulation. First, the CFD technology under different grid densities and time steps is verified. CFD numerical simulation technology is used to simulate the physical model of the energy harvester, and the effect of wind speed on the lateral displacement and aerodynamic force of the flexible structure is analyzed. In addition, this paper also carries out a parameterized study on the influence of the harvester’s behavior, through the wind tunnel test, focusing on the voltage and electric power output efficiency. The harvester has a maximum output power of 119.7 μW/mm3 at the optimal resistance value of 200 KΩ at a wind speed of 10 m/s. The research results provide certain guidance for the design of a high-efficiency harvester with a square aerodynamic shape and a flexible bluff body.


Energy ◽  
2018 ◽  
Vol 165 ◽  
pp. 768-781 ◽  
Author(s):  
Rongshan Bi ◽  
Chen Chen ◽  
Jiansong Li ◽  
Xinshun Tan ◽  
Shuguang Xiang

2013 ◽  
Vol 397-400 ◽  
pp. 218-221
Author(s):  
Nan Zhang ◽  
Yue Zhang

The paper introduce structured grid division, use CFD numerical simulation and FLUNET software to conduct the simulation calculation for the hinge moment of rudder. To illustrate the problem, we select two unused plane airfoil An axis-symmetric rudder, one for the special design of the plane rudder. Calculated at 0.4 ~ 1.8Ma, different rudder angle, angle of attack different hinge moment value, and compare them ultimately come to a flat airfoil optimization program, making the steering hinge moment to meet the indicators proposed.


Sign in / Sign up

Export Citation Format

Share Document