scholarly journals Evolution of weak waves and central expansion waves in a non-ideal relaxing gas

2016 ◽  
Vol 7 (1) ◽  
pp. 409-413 ◽  
Author(s):  
Randheer Singh ◽  
J. Jena
Keyword(s):  
Author(s):  
Marcel Escudier

In this chapter the wide array of engineering devices, from the kitchen tap (a valve) to supersonic aircraft, the basic design of which depends upon considerations of the flow of gases and liquids, is shown. Much the same is true of most natural phenomena from the atmosphere and our weather to ocean waves, and the movement of sperm and other bodily fluids. In this textbook a number of the concepts, principles, and procedures which underlie the analysis of any problem involving fluid flow or a fluid at rest are introduced. In this Introduction, examples have been selected for which, by the end of the book, the student should be in a position to make practically useful engineering-design calculations. These include a dam, a rocket motor, a supersonic aerofoil with shock and expansion waves, a turbojet engine, a turbofan engine, and the blading of a gas turbine.


2018 ◽  
Vol 3 (9) ◽  
Author(s):  
Goran Marjanovic ◽  
Jason Hackl ◽  
Mrugesh Shringarpure ◽  
Subramanian Annamalai ◽  
Thomas L. Jackson ◽  
...  

Author(s):  
Savvas S. Xanthos ◽  
Yiannis Andreopoulos

The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence; a type of interaction free from streamline curvature effects, which cause additional effects on turbulence. In this experiment, wall pressure, total pressure and velocity were measured indicating a clear reduction in fluctuations. The incoming flow at Mach number 0.46 was expanded to a flow with Mach number 0.77 by an applied mean shear of 100 s−1. Although the strength of the generated expansion waves was mild, the effect on damping fluctuations on turbulence was clear. A reduction of in the level of total pressure fluctuations by 20 per cent was detected in the present experiments.


1967 ◽  
Vol 30 (2) ◽  
pp. 385-402 ◽  
Author(s):  
L. F. Henderson

The paper deals with the regular refraction of a plane shock at a gas interface for the particular case where the reflected wave is an expansion fan. Numerical results are presented for the air–CH4 and air–CO2 gas combinations which are respectively examples of ‘slow–fast’ and ‘fast–slow’ refractions. It is found that a previously unreported condition exists in which the reflected wave solutions may be multi-valued. The hodograph mapping theory predicts a new type of regular–irregular transition for a refraction in this condition. The continuous expansion wave type of irregular refraction is also examined. The existence of this wave system is found to depend on the flow being self-similar. By contrast the expansion wave becomes centred when the flow becomes steady. Transitions within the ordered set of regular solutions are examined and it is shown that they may be either continuous or discontinuous. The continuous types appear to be associated with fixed boundaries and the discontinuous types with movable boundaries. Finally, a number of almost linear relations between the wave strengths are noted.


Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
Anna Perelomova ◽  
Pawel Wojda

AbstractThe procedure of derivation of a new dynamical equation governing the vorticity mode that is generated by sound, is discussed in detail. It includes instantaneous quantities and does not require averaging over sound period. The resulting equation applies to both periodic and aperiodic sound as the origin of the vorticity mode. Under certain conditions, the direction of streamlines of the vorticity mode may be inverted as compared with that in a fluid with standard attenuation. This reflects an anomalous absorption of sound, when transfer of momentum of the vorticity mode into momentum of sound occurs. The theory is illustrated by a representative example of the generation of vorticity in a vibrationally relaxing gas in the field of periodic weakly diffracting acoustic beam.


2017 ◽  
Vol 122 (1247) ◽  
pp. 83-103 ◽  
Author(s):  
R. Saravanan ◽  
S.L.N. Desikan ◽  
T.M. Muruganandam

ABSTRACTThe present study investigates the behaviour of the shock train in a typical Ramjet engine under the influence of shock and expansion waves at the entry of a low aspect ratio (1:0.75) rectangular duct/isolator at supersonic Mach number (M = 1.7). The start/unstart characteristics are investigated through steady/unsteady pressure measurements under different back and dynamic pressures while the shock train dynamics are captured through instantaneous Schlieren flow visualisation. Two parameters, namely pressure recovery and the pressure gradient, is derived to assess the duct/isolator performance. For a given back pressure, with maximum blockage (9% above nominal), the duct/isolator flow is established when the dynamic pressure is increased by 23.5%. The unsteady pressure measurements indicate different scales of eddies above 80 Hz (with and without flap deflection). Under the no flap deflection (no back pressure) condition, the maximum fluctuating pressure component is 0.01% and 0.1% of the stagnation pressure at X/L = 0.03 (close to the entry of the duct) and X/L = 0.53 (middle of the duct), respectively. Once the flap is deflected (δ = 8°), decay in eddies by one order is noticed. Further increase in back pressure (δ ≥ 11°) leads the flow to unstart where eddies are observed to be disappeared.


Author(s):  
Paul Xiubao Huang ◽  
Robert S. Mazzawy

This paper is a continuing work from one author on the same topic of the transient aerodynamics during compressor stall/surge using a shock tube analogy by Huang [1, 2]. As observed by Mazzawy [3] for the high-speed high-pressure (HSHP) ratio compressors of the modern aero-engines, surge is an event characterized with the stoppage and reversal of engine flow within a matter of milliseconds. This large flow transient is accomplished through a pair of internally generated shock waves and expansion waves of high strength. The final results are often dramatic with a loud bang followed by the spewing out of flames from both the engine intake and exhaust, potentially damaging to the engine structure [3]. It has been demonstrated in the previous investigations by Marshall [4] and Huang [2] that the transient flow reversal phase of a surge cycle can be approximated by the shock tube analogy in understanding its generation mechanism and correlating the shock wave strength as a function of the pre-surge compressor pressure ratio. Kurkov [5] and Evans [8] used a guillotine analogy to estimate the inlet overpressure associated with the sudden flow stoppage associated with surge. This paper will expand the progressive surge model established by the shock tube analogy in [2] by including the dynamic effect of airflow stoppage using an “integrated-flow” sequential guillotine/shock tube model. It further investigates the surge formation (characterized by flow reversal) and propagation patterns (characterized by surge shock and expansion waves) after its generation at different locations inside a compressor. Calculations are conducted for a 12-stage compressor using this model under various surge onset stages and compared with previous experimental data [3]. The results demonstrate that the “integrated-flow” model closely replicates the fast moving surge shock wave overpressure from the stall initiation site to the compressor inlet.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Liu ◽  
Juan Zhang ◽  
Tao Zhang ◽  
Huidong Zhang

Abrasive gas jet technologies are efficient and beneficial and are widely used to drill metal and glass substrates. When the inlet pressure is increased, gas jets could be powerful enough to break rock. They have potential uses in coal-bed methane exploration and drilling because of their one-of-a-kind nonliquid jet drilling, which avoids water invasion and borehole collapse. Improving the efficiency of rock breakage using abrasive gas jets is an essential precondition for future coal-bed methane exploration. The nozzle structure is vital to the flow field and erosion rate. Furthermore, optimizing the nozzle structure for improving the efficiency of rock breakage is essential. By combining aerodynamics and by fixing the condition of the nozzle in the drill bit, we design four types of preliminary nozzles. The erosion rates of the four nozzles are calculated by numerical simulation, enabling us to conclude that a nozzle at Mach 3 can induce maximum erosion when the pressure is 25 MPa. Higher pressures cannot improve erosion rates because the shield effect decreases the impact energy. Smaller pressures cannot accelerate erosion rates because of short expansion waves and low velocities of the gas jets. An optimal nozzle structure is promoted with extended expansion waves and less obvious shield effects. To further optimize the nozzle structure, erosion rates at various conditions are calculated using the single-variable method. The optimal nozzle structure is achieved by comparing the erosion rates of different nozzle structures. The experimental results on rock erosion are in good agreement with the numerical simulations. The optimal nozzle thus creates maximum erosion volume and depth.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


Sign in / Sign up

Export Citation Format

Share Document