Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors

2018 ◽  
Vol 503 (1) ◽  
pp. 297-303 ◽  
Author(s):  
Shenglin Fang ◽  
Xiaonan Yu ◽  
Haoxuan Ding ◽  
Jianan Han ◽  
Jie Feng
2021 ◽  
Vol 15 ◽  
Author(s):  
Yongfa Zhang ◽  
Xiaoyang Lu ◽  
Bai Tai ◽  
Weijia Li ◽  
Tao Li

Ferroptosis is a unique regulated cell death defined by the intracellular iron overload and distinct biological features compared with other well-known programmed cell death. Ferroptosis can be triggered by many causes including decreased expression of glutathione (GSH), inhibition of the function of glutathione-dependent peroxidase 4 (GPX4), and system xc–, all of which finally lead to the over-accumulation of lipid peroxides in the cell. Ferroptosis has been reported to play an important role in the pathophysiological process of various cancers. In recent years, much evidence also proved that ferroptosis is involved in the progress of cerebral stroke. In this review, we summarized the characteristics of ferroptosis and the potential relationship between ferroptosis and ischemic and hemorrhagic stroke, to provide new targets and ideas for the therapy of stroke.


Author(s):  
Shan Lu ◽  
Xuan-zhong Wang ◽  
Chuan He ◽  
Lei Wang ◽  
Shi-peng Liang ◽  
...  

AbstractFerroptotic cell death is characterized by iron-dependent lipid peroxidation that is initiated by ferrous iron and H2O2 via Fenton reaction, in which the role of activating transcription factor 3 (ATF3) remains elusive. Brucine is a weak alkaline indole alkaloid extracted from the seeds of Strychnos nux-vomica, which has shown potent antitumor activity against various tumors, including glioma. In this study, we showed that brucine inhibited glioma cell growth in vitro and in vivo, which was paralleled by nuclear translocation of ATF3, lipid peroxidation, and increases of iron and H2O2. Furthermore, brucine-induced lipid peroxidation was inhibited or exacerbated when intracellular iron was chelated by deferoxamine (500 μM) or improved by ferric ammonium citrate (500 μM). Suppression of lipid peroxidation with lipophilic antioxidants ferrostatin-1 (50 μM) or liproxstatin-1 (30 μM) rescued brucine-induced glioma cell death. Moreover, knockdown of ATF3 prevented brucine-induced accumulation of iron and H2O2 and glioma cell death. We revealed that brucine induced ATF3 upregulation and translocation into nuclei via activation of ER stress. ATF3 promoted brucine-induced H2O2 accumulation via upregulating NOX4 and SOD1 to generate H2O2 on one hand, and downregulating catalase and xCT to prevent H2O2 degradation on the other hand. H2O2 then contributed to brucine-triggered iron increase and transferrin receptor upregulation, as well as lipid peroxidation. This was further verified by treating glioma cells with exogenous H2O2 alone. Moreover, H2O2 reversely exacerbated brucine-induced ER stress. Taken together, ATF3 contributes to brucine-induced glioma cell ferroptosis via increasing H2O2 and iron.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Kumfu ◽  
S.C Chattipakorn ◽  
N Chattipakorn

Abstract Background Iron overload cardiomyopathy is a common cause of death in iron overload patients. L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been shown to play important roles for iron uptake into the heart under iron overload condition. Recently, cardiomyocytes which exposed to lipocalin-2 (LCN-2) have been shown to increase apoptosis due to excessive intracellular iron accumulation. However, the mechanistic roles of LCN-2 and LCN-2 receptor (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition have never been investigated. Purpose We hypothesized that the LCN-2 and LCN-2R are alternate iron uptake pathways into cardiomyocytes under iron overload condition. Methods H9c2 cardiomyocytes were treated with either LCN-2 siRNA or LCN-2R siRNA for 72 hr or LTCC blocker (verapamil), TTCC blocker (TTA-P2), or iron chelator deferiprone (DFP) for 1 hr. After treatment, cells were exposed to ferric ammonium citrate (FAC, Fe3+) or FAC + 1mM ascorbic acid (Fe2+) at 200 μM for 48 hr. Intracellular iron level, cell viability, mitochondrial dynamics, mitophagy and apoptosis were determined. Results Both Fe2+ and Fe3+ treated groups showed significantly increased intracellular iron uptake, decreased cell viability, increased mitochondrial fission, mitophagy and apoptotic protein expression in cardiomyocytes. Under Fe2+ overload condition, treatments with LTCC blocker, TTCC blocker, and DFP could significantly decrease intracellular iron accumulation and increase cell viability via decreasing mitochondrial fission, mitophagy and cleaved caspase-3 (Figure), whereas both LCN-2 and LCN-2R siRNA treatment had no beneficial effects on these parameters. Under Fe3+ overload condition, treatment with LCN-2 siRNA, LCN-2R siRNA, and DFP showed beneficial effects on those parameters, whereas neither LTCC nor TTCC blocker provided these benefits (Figure 1). Conclusion Silencing of LCN-2 and LCN-2R increased cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe3+ iron overload condition. Meanwhile, treatment with calcium channel blockers improved cardiomyocytes viability via decreasing iron uptake, mitochondrial fission, mitophagy and apoptosis under Fe2+ iron overload condition. All of these findings suggested that LTCC and TTCC played important roles for Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions. Figure 1. Cell viability and apoptosis Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Thailand Research Fund and NSTDA Research Chair Grant (NC)


2012 ◽  
Vol 1489 ◽  
pp. 133-139 ◽  
Author(s):  
J.A. Lockman ◽  
W.J. Geldenhuys ◽  
M.R. Jones-Higgins ◽  
J.D. Patrick ◽  
D.D. Allen ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1999-1999
Author(s):  
Jorge P Pinto ◽  
Vera Dias ◽  
Heinz Zoller ◽  
Pedro N Rodrigues ◽  
Helena Carmo ◽  
...  

Abstract Abstract 1999 Poster Board I-1021 Background: Recent evidence suggests the involvement of lymphocytes in the severity of iron overload disorders, with increased severity of iron overload in Hereditary Hemochromatosis patients and in animal models with lymphocyte number deficiencies. However, no mechanism(s) has been suggested to explain these observations. The aim of this study was to analyze hepcidin expression in lymphocytes. Methods: Expression of hepcidin was analyzed by Real-time PCR in human and mouse Peripheral Blood Lymphocytes (PBLs) and in selected resting lymphocyte populations, in response to holotransferrin and ferric citrate. The effect of hepcidin in the expression of the iron exporter Ferroportin was analyzed by FACS and confocal immunofluorescence. Cellular iron traffic was analyzed by measurement of 55Fe and 125I-TF, cell proliferation assessed by BrdU incorporation and silencing of gene expression in lymphocytes performed with siRNAs. Results: Hepcidin is expressed in PBLs and is up-regulated in response to holotransferrin and ferric citrate. The response to holotransferrin was observed in CD8+ and not in CD4+ lymphocytes, a result confirmed by the failure of lymphocytes from β2-microglobulin-KO mice to respond to holotransferrin, in comparison with Bl6/J controls. Hepcidin up-regulation induced by holotransferrin decreases ferroportin expression, inducing its co-localization with the proteasome marker LMP2. Tumor Necrosis Factor-á (TNF-á) expression in PBLs increases with holotransferrin treatments. siRNA-mediated silencing of TNF-á in PBLs abrogates hepcidin up-regulation by holotransferrin and incubation of PBLs with recombinant TNF-á increases hepcidin expression, suggesting the involvement of this cytokine in the basal and holotransferrin-induced hepcidin expression in these cells. The role of hepcidin in a situation of high iron demand - lymphocyte activation and proliferation - was assessed. Hepcidin expression increases with T-lymphocyte activation and siRNA-mediated silencing of hepcidin in activated T lymphocytes causes a decrease in intracellular iron levels, by increasing ferroportin-mediated iron export. The low intracellular iron levels were associated with impaired T lymphocyte proliferation. Discussion: The ability of PBLs to increase hepcidin expression in response to ferric citrate distinguishes lymphocytes from hepatocytes and places peripheral blood lymphocyte numbers as a first line of response to increases in transferrin saturation and presence of NTBI, characteristic of iron overload disorders. The findings that hepcidin modulates ferroportin expression, intracellular iron levels and cell proliferation in lymphocytes demonstrate the importance of this protein for lymphocyte iron homeostasis. The control of the intracellular iron levels of lymphocytes confers to hepcidin a pivotal role in the postulated ability of circulating lymphocytes to function as “biological iron chelators”. Conclusion: With the demonstration, for the first time, of hepcidin synthesis by peripheral blood lymphocytes, of its regulation by elemental iron and of its involvement in T cell proliferation, the present results put forward a molecular mechanism for the described modifier role of lymphocytes in protection from iron toxicity. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 79 (23) ◽  
pp. 7210-7219 ◽  
Author(s):  
Sergios A. Nicolaou ◽  
Alan G. Fast ◽  
Eiko Nakamaru-Ogiso ◽  
Eleftherios T. Papoutsakis

ABSTRACTReactive oxygen species are generated by redox reactions and the Fenton reaction of H2O2and iron that generates the hydroxyl radical that causes severe DNA, protein, and lipid damage. We screenedEscherichia coligenomic libraries to identify a fragment, containingcueR,ybbJ,qmcA,ybbL, andybbM, which enhanced resistance to H2O2stress. We report that the ΔybbLand ΔybbMstrains are more susceptible to H2O2stress than the parent strain and thatybbLandybbMoverexpression overcomes H2O2sensitivity. TheybbLandybbMgenes are predicted to code for an ATP-binding cassette metal transporter, and we demonstrate that YbbM is a membrane protein. We investigated various metals to identify iron as the likely substrate of this transporter. We propose the gene namesfetAandfetB(for Fe transport) and the gene product names FetA and FetB. FetAB allows for increased resistance to oxidative stress in the presence of iron, revealing a role in iron homeostasis. We show that iron overload coupled with H2O2stress is abrogated byfetAandfetBoverexpression in the parent strain and in the Δfurstrain, where iron uptake is deregulated. Furthermore, we utilized whole-cell electron paramagnetic resonance to show that intracellular iron levels in the Δfurstrain are decreased by 37% byfetAandfetBoverexpression. Combined, these findings show thatfetAandfetBencode an iron exporter that has a role in enhancing resistance to H2O2-mediated oxidative stress and can minimize oxidative stress under conditions of iron overload and suggest that FetAB facilitates iron homeostasis to decrease oxidative stress.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Saideng Lu ◽  
Yu Song ◽  
Rongjin Luo ◽  
Shuai Li ◽  
Gaocai Li ◽  
...  

Ferroptosis is a specialized form of regulated cell death that is charactered by iron-dependent lethal lipid peroxidation, a process associated with multiple diseases. However, its role in the pathogenesis of intervertebral disc degeneration (IVDD) is rarely investigated. This study is aimed at investigating the role of ferroptosis in oxidative stress- (OS-) induced nucleus pulposus cell (NPC) decline and the pathogenesis of IVDD and determine the underlying regulatory mechanisms. We used tert-butyl hydroperoxide (TBHP) to simulate OS conditions around human NPCs. Flow cytometry and transmission electron microscopy were used to identify ferroptosis, while iron assay kit, Perl’s staining, and western blotting were performed to assay the intracellular iron levels. A ferroportin- (FPN-) lentivirus and FPN-siRNA were constructed and used to explore the relationship between FPN, intracellular iron homeostasis, and ferroptosis. Furthermore, hinokitiol, a bioactive compound known to specifically resist OS and restore FPN function, was evaluated for its therapeutic role in IVDD both in vitro and in vivo. The results indicated that intercellular iron overload plays an essential role in TBHP-induced ferroptosis of human NPCs. Mechanistically, FPN dysregulation is responsible for intercellular iron overload under OS. The increase in nuclear translocation of metal-regulatory transcription factor 1 (MTF1) restored the function of FPN, abolished the intercellular iron overload, and protected cells against ferroptosis. Additionally, hinokitiol enhanced the nuclear translocation of MTF1 by suppressing the JNK pathway and ameliorated the progression of IVDD in vivo. Taken together, our results demonstrate that ferroptosis and FPN dysfunction are involved in the NPC depletion and the pathogenesis of IVDD under OS. To the best of our knowledge, this is the first study to demonstrate the protective role of FPN in ferroptosis of NPCs, suggesting its potential used as a novel therapeutic target against IVDD.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1278-1278 ◽  
Author(s):  
Evangelia Vlachodimitropoulou Koumoutsea ◽  
Pimpisid Koonyosying ◽  
John B. Porter ◽  
Nichola Cooper ◽  
Bethan Psaila ◽  
...  

Abstract Introduction: Eltrombopag (ELT) is an orally active, nonpeptide, small-molecule thrombopoietin receptor agonist (TPO-R), used to treat chronic immune thrombocytopenic purpura (ITP). We have recently reported its ability to mobilise cellular iron, and act as an iron shuttle when combined with currently licensed chelation therapies (Vlachodimitropoulou et al, Blood 2014, Volume 124, 21). Tissue damage induced by ROS production in iron overload conditions includes endocrine dysfunction including type I diabetes. We have developed a model where iron overload of the pancreatic cell line (RINm5F) inhibits insulin secretion. We investigated the ability of ELT, compared with clinically licensed iron chelators, to reverse ROS production and concomitant suppression of insulin production by iron loading of these cells. Methods: Cell line: RINm5F is a clonal rat pancreatic b cell line (LGC ATCC Sales, UK). These cells secrete insulin following a glucose challenge (Praz et al., 1983, Biochemistry J). Intracellular Iron: Cellular iron loading and mobilisation were measured as a decrease in cellular iron content using the ferrozine assay (Vlachodimitropoulou et al. 2015, British Journal of Haematology). A four-fold increase in intracellular iron compared to control was obtained by serially treating cells with 10% Fetal Bovine Serum (FBS) RPMI media in pancreatic cells over two ten hour periods (Figure 1A). The cells were then exposed to iron chelators/ELT, lysed and intracellular iron concentration determined, normalised against protein content. Reactive oxygen species (ROS) estimation: A cell-permeable oxidation-sensitive fluorescent probe 5,6-carboxy-2',7'- dichlorofluorescein diacetate (DCFH-DA); (Molecular Probes, Leiden, Netherlands) was used to measure intracellular ROS. Following iron loading, the cells were pre-incubated with 6 mM H2DCF-DA for 30 minutes at 37°C. Chelators were added and the fluorescence of control and treated cells was read throughout the treatment period in the plate reader (excitation 504 nm, emission 526 nm). Insulin quantification: Following iron loading and chelator treatment, the cells were challenged with Kreb's Ringer Buffer twice, for one hour at a time, containing 2.8mM and 16.7mM glucose (Lu et al. 2010, Toxicology letter). The supernatant was then collected and insulin concentration determined using a standard rat insulin ELISA kit (Life Technologies Limited, UK). Viability: The Sulforhodamide B (SRB) viability assay was used to ensure viability >98% and assess the toxicity on the pancreatic cell line. It is commonly used to measure drug-induced cytotoxicity and is a colorimetric assay dependent on healthy adherent cells. Results: Pancreatic cell iron loading was achieved with serial changes of media containing 10% FBS. This loading method was comparable to treating cells with ferric ammonium citrate (FAC) for 24 hours, which was not adopted as FAC adheres to the extracellular surface and produces bias to our intracellular iron quantification system when using iron chelators (Figure 1A). When cells were then treated with increasing ELT concentrations, a dose-dependent cellular iron removal were demonstrated so that at 10μΜ for 8hours, approximately 40% of total cellular iron was mobilised (Figure 3A). Iron mobilisation by ELT was further enhanced by combination with DFO, DFX or DFP (Figure 3). For example, when 10μΜ DFP is combined with 3μΜ ELT, iron mobilisation increases by a further 17% when compared to DFP treatment alone (Figure 3C). ROS production was also decreased in iron-loaded cells in a concentration-dependent manner by increasing ELT concentrations (Figure 2). These reductions in ROS and cellular iron were associated with restoration of insulin secretion, which was reduced by 2.6 fold following iron loading (Figure 1B). The levels of insulin secretion returned back to higher than baseline levels (better than with DFX 1μΜ) (Figure 1C). Conclusions: This is the first demonstration of a link between cellular iron overload and reduced insulin secretion using pancreatic b-cell line. This is also the first demonstration of improved pancreatic b-cell function, evidenced by restoration of insulin secretion, when iron is chelated and ROS decreased by ELT and other iron chelators. ELT may be useful alone or in combination with other chelators for decreasing iron-mediated ROS induced damage to pancreatic b-cells. Disclosures Porter: Novartis: Consultancy, Honoraria, Research Funding; Bluebird Bio: Consultancy; Agios Pharmaceuticals: Consultancy, Honoraria; Celegene: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document