Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth

2020 ◽  
Vol 156 ◽  
pp. 107499
Author(s):  
Wenyan Ma ◽  
Jian Zhang ◽  
Liang Shu ◽  
Xinqi Tan ◽  
Ya An ◽  
...  
2021 ◽  
Vol 02 ◽  
Author(s):  
Thanh V. Ngo ◽  
Christopher J. Scarlett ◽  
Michael C. Bowyer ◽  
Rebecca McCullum ◽  
Quan V. Vuong

Background: S. chinensis extract contains bioactive compounds, which exhibit high antioxidant activities. However, for commercial uses, it is necessary to encapsulate the extract to protect it from degradation. Objective: This study aimed to optimise spray-drying conditions and then compare with freeze-drying to identify the most suitable conditions for encapsulation of Salacia chinensis L. root extract. Method: Three factors of spray-drying encapsulation, including maltodextrin concentration, inlet temperature and feed rate, have been tested for the impacts on the physical and phytochemical properties of S. chinensis root extract. Based on the optimal conditions, the spray-drying was then compared with freeze-drying. Results: The results showed that maltodextrin concentration, inlet temperature and feed rate had significant impacts on recovery yield, phenolics, mangiferin and antioxidant activity of the spray-dried extract. The optimal spray-drying encapsulation conditions were maltodextrin concentration of 20 %, inlet temperature of 130ºC and feed rate of 9 mL/min. Under these optimal conditions, the encapsulated extract had comparable solubility, total phenolics, mangiferin, and antioxidant activity, lower bulk density, moisture content, and water activity as compared to encapsulated extract made using the freeze-drying technique. These optimal spray-drying conditions are recommended to encapsulate the extract of S. chinensis root. Conclusion: Spray-drying was found to be more effective for encapsulation of S. chinensis root extract than freeze-drying. Therefore, spray-drying is recommended for further applications.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6700
Author(s):  
Jolanta Gawałek

Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Atefe Ghafurian Nasab ◽  
Sayed Ali Mortazavi ◽  
Farideh Tabatabaei Yazdi ◽  
Mahboobe Sarabi Jamab

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.


Author(s):  
S. FERREIRA ◽  
C. R. MALACRIDA ◽  
V. R. NICOLETTI

            Turmeric (Curcuma longa L.) oleoresin possess valuable phenolic compounds that are susceptible to degradation, and microencapsulation is a powerful technique to increase its stability. Emulsification is a preponderant step in microencapsulation of hydrophobic compounds and physical-chemical properties of the parent emulsion affects effectiveness of spray-drying process and functional properties of the produced microcapsules. The present work aimed to evaluate the influence of emulsion formulation, emulsification methods, and spray-drying operational conditions on the encapsulation efficiency of turmeric oleoresin using maltodextrin/gelatin blends as wall material. The effects of different concentrations of maltodextrin (12 - 31.7 wt %) and gelatin (0.6 - 6 wt %), combined with three methods of emulsification - high shear homogenization with and without emulsifier addition, and sonication – were evaluated regarding emulsion droplet mean diameter and stability. Based on the results, an emulsion formulated with 26 g of maltodextrin and 0.6 g of gelatin per 100 g of emulsion was selected to study the influence of spray drying conditions - drying-air temperature (124 – 190 oC), atomization airflow (275 – 536 L h-1), and emulsion feeding flow (1.4 – 8.6 mL min-1) - on encapsulation efficiency, water content, and solubility of turmeric oleoresin microcapsules. Sonication resulted in higher emulsion stability and, although drying-air temperature did not affect significantly the microcapsule properties, the best set of spray drying conditions was drying-air at 160 ºC, atomization airflow of 420 L h-1, and emulsion feeding flow of 6 mL min-1. Combinations of higher atomization airflow and lower emulsion feeding flow resulted in lower values of curcumin encapsulation efficiency.


2016 ◽  
Vol 9 (12) ◽  
pp. 1969-1978 ◽  
Author(s):  
Gerson Reginaldo Marques ◽  
Regiane Victória de Barros Fernandes ◽  
Soraia Vilela Borges ◽  
Diego Alvarenga Botrel

LWT ◽  
2021 ◽  
Vol 140 ◽  
pp. 110640
Author(s):  
Yi-Huang Hsueh ◽  
Jun-Huang Yang ◽  
Shih-Fu Ou ◽  
Shyi-Tien Chen ◽  
Jen-Min Kuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document