Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp.

2020 ◽  
Vol 298 ◽  
pp. 122562 ◽  
Author(s):  
Lujing Ren ◽  
Xiaoman Sun ◽  
Lihui Zhang ◽  
He Huang ◽  
Quanyu Zhao
Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 30
Author(s):  
Jia Wang ◽  
Yuxin Wang ◽  
Yijian Wu ◽  
Yuwei Fan ◽  
Changliang Zhu ◽  
...  

Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sen Wang ◽  
Weijian Wan ◽  
Zhuojun Wang ◽  
Huidan Zhang ◽  
Huan Liu ◽  
...  

Thraustochytrid is a promising algal oil resource with the potential to meet the demand for docosahexaenoic acid (DHA). However, oils with high DHA content produced by genetic modified thraustochytrids are not accepted by the food and pharmaceutical industries in many countries. Therefore, in order to obtain non-transgenic strains with high DHA content, a two-stage adaptive laboratory evolution (ALE) strategy was applied to the thraustochytrid Aurantiochytrium sp. Heavy-ion irradiation technique was first used before the ALE to increase the genetic diversity of strains, and then two-step ALE: low temperature based ALE and ACCase inhibitor quizalofop-p-ethyl based ALE were employed in enhancing the DHA production. Using this strategy, the end-point strain E-81 with a DHA content 51% higher than that of the parental strain was obtained. The performance of E-81 strain was further analyzed by component analysis and quantitative real-time PCR. The results showed that the enhanced in lipid content was due to the up-regulated expression of key enzymes in lipid accumulation, while the increase in DHA content was due to the increased transcriptional levels of polyunsaturated fatty acid synthase. This study demonstrated a non-genetic approach to enhance lipid and DHA content in non-model industrial oleaginous strains.


2016 ◽  
Vol 205 ◽  
pp. 264-268 ◽  
Author(s):  
Libo Wang ◽  
Chuizhao Xue ◽  
Liang Wang ◽  
Quanyu Zhao ◽  
Wei Wei ◽  
...  

2020 ◽  
Vol 12 (12) ◽  
pp. 5125
Author(s):  
Neha Arora ◽  
Hong-Wei Yen ◽  
George P. Philippidis

Oleaginous microalgae and yeasts represent promising candidates for large-scale production of lipids, which can be utilized for production of drop-in biofuels, nutraceuticals, pigments, and cosmetics. However, low lipid productivity and costly downstream processing continue to hamper the commercial deployment of oleaginous microorganisms. Strain improvement can play an essential role in the development of such industrial microorganisms by increasing lipid production and hence reducing production costs. The main means of strain improvement are random mutagenesis, adaptive laboratory evolution (ALE), and rational genetic engineering. Among these, random mutagenesis and ALE are straight forward, low-cost, and do not require thorough knowledge of the microorganism’s genetic composition. This paper reviews available mutagenesis and ALE techniques and screening methods to effectively select for oleaginous microalgae and yeasts with enhanced lipid yield and understand the alterations caused to metabolic pathways, which could subsequently serve as the basis for further targeted genetic engineering.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Avinash Godara ◽  
Katy C. Kao

Abstract Background β-Caryophyllene is a plant terpenoid with therapeutic and biofuel properties. Production of terpenoids through microbial cells is a potentially sustainable alternative for production. Adaptive laboratory evolution is a complementary technique to metabolic engineering for strain improvement, if the product-of-interest is coupled with growth. Here we use a combination of pathway engineering and adaptive laboratory evolution to improve the production of β-caryophyllene, an extracellular product, by leveraging the antioxidant potential of the compound. Results Using oxidative stress as selective pressure, we developed an adaptive laboratory evolution that worked to evolve an engineered β-caryophyllene producing yeast strain for improved production within a few generations. This strategy resulted in fourfold increase in production in isolated mutants. Further increasing the flux to β-caryophyllene in the best evolved mutant achieved a titer of 104.7 ± 6.2 mg/L product. Genomic analysis revealed a gain-of-function mutation in the a-factor exporter STE6 was identified to be involved in significantly increased production, likely as a result of increased product export. Conclusion An optimized selection strategy based on oxidative stress was developed to improve the production of the extracellular product β-caryophyllene in an engineered yeast strain. Application of the selection strategy in adaptive laboratory evolution resulted in mutants with significantly increased production and identification of novel responsible mutations.


Author(s):  
Sophie Vaud ◽  
Nicole Pearcy ◽  
Marko Hanževački ◽  
Alexander M.W. Van Hagen ◽  
Salah Abdelrazig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document