Synergistic effect of sugarcane scum as an accelerant co-substrate on anaerobic co-digestion with agricultural crop residues from non-centrifugal cane sugar agribusiness sector

2020 ◽  
Vol 303 ◽  
pp. 122957 ◽  
Author(s):  
O. Mendieta ◽  
L. Castro ◽  
J. Rodríguez ◽  
H. Escalante
2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2019 ◽  
Vol 9 (19) ◽  
pp. 3980 ◽  
Author(s):  
Saowanee Wijitkosum ◽  
Preamsuda Jiwnok

For an agricultural country such as Thailand, converting agricultural waste into biochar offers a potential solution to manage massive quantities of crop residues following harvest. This research studied the structure and chemical composition of biochar obtained from cassava rhizomes, cassava stems and corncobs, produced using a patented locally-manufactured biochar kiln using low-cost appropriate technology designed to be fabricated locally by farmers. The research found that cassava stems yielded the highest number of Brunauer-Emmett-Teller (BET) surface area in the biochar product, while chemical analysis indicated that corncobs yielded the highest amount of C (81.35%). The amount of H in the corncob biochar was also the highest (2.42%). The study also showed biochar produced by slow pyrolysis was of a high quality, with stable C and low H/C ratio. Biochar’s high BET surface area and total pore volume makes it suitable for soil amendment, contributing to reduced soil density, higher soil moisture and aeration and reduced leaching of plant nutrients from the rhizosphere. Biochar also provides a conducive habitat for beneficial soil microorganisms. The findings indicate that soil incorporation of biochar produced from agricultural crop residues can enhance food security and mitigate the contribution of the agricultural sector to climate change impacts.


2015 ◽  
Vol 30 (3) ◽  
Author(s):  
Adewale Allen Sokan-Adeaga ◽  
Godson R.E.E. Ana

AbstractThe quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria’s primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria’s development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the establishment of biofuel-processing plants in Nigeria.


Author(s):  
Shu Ting Chang ◽  
Solomon P. Wasser

The word mushroom may mean different things to different people in different countries. Specialist studies on the value of mushrooms and their products should have a clear definition of the term mushroom. In a broad sense, “Mushroom is a distinctive fruiting body of a macrofungus, which produce spores that can be either epigeous or hypogeous and large enough to be seen with the naked eye and to be picked by hand.” Thus, mushrooms need not be members of the group Basidiomycetes, as commonly associated, nor aerial, nor fleshy, nor edible. This definition is not perfect, but it has been accepted as a workable term to estimate the number of mushrooms on Earth (approximately 16,000 species according to the rules of International Code of Nomenclature). The most cultivated mushrooms are saprophytes and are heterotrophic for carbon compounds. Even though their cells have walls, they are devoid of chlorophyll and cannot perform photosynthesis. They are also devoid of vascular xylem and phloem. Furthermore, their cell walls contain chitin, which also occurs in the exoskeleton of insects and other arthropods. They absorb O2 and release CO2. In fact, they may be functionally more closely related to animal cells than plants. However, they are sufficiently distinct both from plants and animals and belong to a separate group in the Fungi Kingdom. They rise up from lignocellulosic wastes: yet, they become bountiful and nourishing. Mushrooms can greatly benefit environmental conditions. They biosynthesize their own food from agricultural crop residues, which, like solar energy, are readily available; otherwise, their byproducts and wastes would cause health hazards. The spent compost/substrate could be used to grow other species of mushrooms, as fodder for livestock, as a soil conditioner and fertilizer, and in environmental bioremediation. The cultivation of mushrooms dates back many centuries; Auricularia auricula-judae, Lentinula edodes, and Agaricus bisporus have, for example, been cultivated since 600 ad, 1100 ad, and 1650 ad, respectively. During the last three decades, there has been a dramatic increase in the interest, popularity, and production of mushrooms through farming worldwide. The cultivation methods can involve a relatively simple farming activity, as with Volvariella volvacea and Pleurotus pulmonarius var. stechangii (=P. sajor-caju), or a high-technology industry, as with Agaricus bisporus, Flammulina velutipes, and Hypsizygus marmoreus. In each case, however, continuous production of successful crops requires both practical experience and scientific knowledge. Mushrooms can be used as food, tonics, medicines, cosmeceuticals, and as natural biocontrol agents in plant protection with insecticidal, fungicidal, bactericidal, herbicidal, nematocidal, and antiphytoviral activities. The multidimensional nature of the global mushroom cultivation industry, its role in addressing critical issues faced by humankind, and its positive contributions are presented. Furthermore, mushrooms can serve as agents for promoting equitable economic growth in society. Since the lignocellulose wastes are available in every corner of the world, they can be properly used in the cultivation of mushrooms, and therefore could pilot a so-called white agricultural revolution in less developed countries and in the world at large. Mushrooms demonstrate a great impact on agriculture and the environment, and they have great potential for generating a great socio-economic impact in human welfare on local, national, and global levels.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 8-17
Author(s):  
Anežka Sedmihradská ◽  
Michael Pohořelý ◽  
Petr Jevič ◽  
Siarhei Skoblia ◽  
Zdeněk Beňo ◽  
...  

Pyrolysing agricultural crop residues and other biomass constitutes a newer method of transforming often difficult, waste materials into a novel type of soil amendment/additive. Simultaneously, this process also makes it possible to exploit part of the energy released in the agricultural production. Biochar, viewed as the solid product of biomass pyrolysis, is a remarkable, porous material, rich in carbon. Two agricultural crop residues, such as wheat and barley straw, were selected for the experimental studies. The results indicate that the practical temperature for the production of biochar from the two explored materials occurs in the vicinity of 600 °C. Starting at this temperature, the biochar produced complies safely with the principal European Biochar Certificate standards (EBC 2012). Thus, for the wheat straw and barley straw – originated char, the content of the carbon amounts to 67.2 and 67.0 mass %, the atomic ratio H : C is as large as 0.032 and 0.026, and the specific surface area amounts to 217 and 201 m<sup>2</sup>·g<sup>–1</sup>, respectively.


2020 ◽  
pp. 361-368
Author(s):  
Svitlana Yaheliuk ◽  
Volodymyr Didukh ◽  
Vitally Busnyuk ◽  
Galina Boyko ◽  
Oleksandr Shubalyi

Currently, the use of secondary agricultural raw material is a topical issue. There are various applications of agricultural crop residues possible, but they are finance- and energy-consuming. Burning crop residues is very harmful for the environment. One of the ways to solve the problem is the production of solid biofuel that can be used to heat buildings. The authors suggest producing solid biofuel in the form of small-sized fuel rolls / pellets (SFR), which are made of oleaginous flax residues. As a result of the conducted experimental investigations, the authors have proved the efficiency and the environmental safety of SFR consumption. The new fuel can be recommended if the requirement of efficient and ecologically safe combustion is met. Thus, the influence of small-sized fuel rolls’ properties on the process of their combustion as well as quantitative and qualitative analysis of the combustion gases from burning solid fuel made of oleaginous flax residues have been investigated. The paper presents the results proving that SFR combustion is the most efficient on condition of providing reduced moisture (10-12%) and reasonable density (80 kg/m3) in the process of pellet production. In addition, it has been determined that there is a significant reduction of harmful CO emissions and normalization of СО2 concentration. The application of the suggested solid biofuel can make it possible to solve the problem of using oleaginous flax residues and provide cheap fuel for household purposes.


Sign in / Sign up

Export Citation Format

Share Document