The potential for commercial scale production and application of activated carbon from cassava peels in Africa: A review

2021 ◽  
pp. 100772
Author(s):  
R. Kayiwa ◽  
H. Kasedde ◽  
M. Lubwama ◽  
J.B. Kirabira
2018 ◽  
Vol 39 (6) ◽  
pp. 2325 ◽  
Author(s):  
Maria Yumbla-Orbes ◽  
José Geraldo Barbosa ◽  
Wagner Campos Otoni ◽  
Marcel Santos Montezano ◽  
José Antônio Saraiva Grossi ◽  
...  

Flowering induction and control is a limiting factor when commercially producing cut flowers of lisianthus and seed exposure to low temperatures, a physiological event called vernalization, induces the differentiation of vegetative buds to reproductive buds, contributing to a flowering that is uniform and has quality. The objective of this study was to evaluate the influence of seed vernalization in three cultivars of lisianthus (Excalibur, Echo and Mariachi) for 12, 24, 36 and 48 days at temperatures of 5, 10 and 15°C, in the production and quality of buds, making this technology feasible to large-scale production. During cultivation it was observed that the lower the temperature and higher the vernalization period, the lower the cycle and the greater the number of plants induced to flowering for all three cultivars, and those are important features in the context of flower production in a commercial scale. The seeds subjected to vernalization originated plants that produce flower stems within the standards required by the market, showing that vernalization was efficient to induce flowering without affecting the quality of the buds. To produce lisianthus as a cut flower of quality, it is recommended seed vernalization of Mariachi and Echo cultivars for 24 days at 5°C and Excalibur for 36 days at 5°C.


Author(s):  
Darmawati Darmawati ◽  
Syarifah Maulidar ◽  
Khairun Nisa

The study aims to find out about the possibility of utilizing cassava peel waste as raw material for making activated carbon to reduce levels of Manganese in water. This study also wants to see the effect of variations in the concentration of activated carbon from cassava peels on decreasing levels of Manganese in water. This research was conducted at the Laboratory of the Akademi Analis Kesehatan Pemerintah Aceh and at the UPTD Laboratorium Kesehatan Banda Aceh on 3-11 March 2016. Manganese was analysed using the persulfate method while the Manganese was examinated by the spectrophotometric method. The sample used is an artificial sample by adding MnSO4 to water. The variation of activated carbon concentration added is 2 gr, 3 gr, and 4 gr. The results are that with the addition of 2 grams of activated carbon the percentage of Manganese reduction was 70.37%, the addition of 3 grams of activated carbon decreased Manganese concentration by 86.59%, while the addition of 4 grams of activated carbon reduced the percentage of Manganese to 92.33%. It can be concluded that the higher the concentration of activated carbon added, the higher the decrease in levels of Manganese in the water.


2019 ◽  
Vol 15 ◽  
pp. 63-71 ◽  
Author(s):  
Hanna M. Leinonen ◽  
Eevi M. Lipponen ◽  
Anniina J. Valkama ◽  
Heidi Hynynen ◽  
Igor Oruetxebarria ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1279
Author(s):  
Manuel Checa ◽  
Sergio Nogales-Delgado ◽  
Vicente Montes ◽  
José María Encinar

Once a biorefinery is ready to operate, the main processed materials need to be completely evaluated in terms of many different factors, including disposal regulations, technological limitations of installation, the market, and other societal considerations. In biorefinery, glycerol is the main by-product, representing around 10% of biodiesel production. In the last few decades, the large-scale production of biodiesel and glycerol has promoted research on a wide range of strategies in an attempt to valorize this by-product, with its transformation into added value chemicals being the strategy that exhibits the most promising route. Among them, C3 compounds obtained from routes such as hydrogenation, oxidation, esterification, etc. represent an alternative to petroleum-based routes for chemicals such as acrolein, propanediols, or carboxylic acids of interest for the polymer industry. Another widely studied and developed strategy includes processes such as reforming or pyrolysis for energy, clean fuels, and materials such as activated carbon. This review covers recent advances in catalysts used in the most promising strategies considering both chemicals and energy or fuel obtention. Due to the large variety in biorefinery industries, several potential emergent valorization routes are briefly summarized.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6462
Author(s):  
Isaac Lorero ◽  
Arturo J. Vizcaíno ◽  
Francisco J. Alguacil ◽  
Félix A. López

An activated carbon manufacturing process from winemaking waste is analyzed. In that way, vine shoots conversion is studied as a basis for plant designing, and mass and energy balances of hydrothermal carbonization and physical activation are fulfilled. To develop an energy-integrated plant, a network of heat exchangers is allocated to recover heat waste, and a cogeneration cycle is designed to provide electricity and remaining heat process demands. Furthermore, thermoeconomic analysis is applied to determine the thermodynamic efficiency and the economic viability of the plant. Energy balance indicates that heat exchangers energy integration covers 48.9% of the overall demands by crossing hot and cold streams and recovering heat from residual flue gas. On the other hand, the exergy costs analysis identifies combustion of pruning wood as the main source of exergy destruction, confirming the suitability of the integration to improve the thermodynamic performance. Attending to economic costs analysis, production scale and vineyard pruning wood price are identified as a critical parameter on process profitability. With a scale of 2.5 ton/h of pruning wood carbonization, a break-event point to compete with activated carbons from biomass origin is reached. Nevertheless, cost of pruning wood is identified as another important economic parameter, pointing out the suitability of wet methods such as hydrothermal carbonization (HTC) to treat them as received form the harvest and to contribute to cutting down its prices.


2010 ◽  
Vol 10 (4) ◽  
pp. 25-34 ◽  
Author(s):  
david s. shields

From the 1770s to the 1880s agriculturists and cooks sought to develop culinary oils from plants. Thomas Jefferson's attempts to introduce the olive into the agriculture of the United States, as a partial substitute for lard in cookery and as a cheap oleo for the consumption of slaves, met with limited success, even in the southeast, because periodic freezes and high humidity thwarted the development of groves. Southern slaves from West Africa supplied their own oil, derived from benne (Sesamum indicum). Benne oil was merely one feature of an elaborate African-American cuisine employing sesame that included benne soup, benne and greens, benne and hominy, benne candy, and benne wafers. Only the last item has survived as a feature of regional and ethnic cookery. In the first decades of the nineteenth century, planter experimentalists began the commercial scale production of benne oil, establishing it as the primary salad oil and the second favored frying medium in the southern United States. It enjoyed acceptance and moderate commercial success until the refinement of cottonseed oil in the 1870s and 1880s. Cotton seed, a waste product of the south's most vital industry, was turned into a revenue stream as David Wesson and other scientists created a salad oil and frying medium designedly tasteless and odorless, and a cooking fat, hydrogenated cottonseed oil (Cottonlene or Crisco) that could cheaply substitute for lard in baking. With the recent recovery of regional foodways, both the olive and sesame are being revived for use in the neo-southern cookery of the twenty-first century.


2015 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Hartini Hartini ◽  
Yuniawan Hidayat ◽  
Mudjijono Mudjijono

<p>A composite of γ-alumina and activated carbon made of cassava peels was studied in terms of its pore structures and its properties. The objective of this study was to determine the interaction and structure, as well as the character and pore size of γ-alumina – activated carbon composite.</p><p>Carbon made of cassava peels was activated by H<sub>2</sub>SO<sub>4</sub> and its activities were tested according to the Indonesian Industrial Standards (SII). The addition of activated carbon into γ-alumina made in variations of 10, 20, 30, 40 and 50 % w/w, of the total weight of 10 grams. The composite of γ-alumina - activated carbon was characterized by FTIR, SAA (Surface Area Analyzer), XRD, and determination of Hysteresis Loop composites.</p>The greater addition of activated carbon to γ-alumina causes intermolecular interactions between –O-H groups form rehydrated hydrogen bonds in the composite is greater. The structure of γ-alumina in the composites remain intact although the percentage of activated carbon in composite is large. The total pore volume and surface area using the BET method of the composite decreases with increasing activated carbon percentage. The greater addition of activated carbon to γ-alumina causes size of mesoporous composites decreased with the characteristic of a composite formed is closer to the activated carbon.


Sign in / Sign up

Export Citation Format

Share Document