The imidazo[1,2-a]pyridine ring system as a scaffold for potent dual phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors

2015 ◽  
Vol 25 (19) ◽  
pp. 4136-4142 ◽  
Author(s):  
Markian M. Stec ◽  
Kristin L. Andrews ◽  
Yunxin Bo ◽  
Sean Caenepeel ◽  
Hongyu Liao ◽  
...  
2020 ◽  
Vol 19 (2) ◽  
pp. 206-210
Author(s):  
Feng Chen ◽  
Bei Zhang

Lupeol exhibits multiple pharmacological activities including, anticancerous, anti-inflammatory, and antioxidant. The aim of this study was to explore the anticancerous activity of lupeol on ovarian cancer cells and examine its mechanism of action. To this end, increasing concentrations of lupeol on cell viability, cell cycle, and apoptosis in Caov-3 cells were evaluated. Lupeol inhibited cell viability, induced G1 phase arrest in cell cycle, increased cell apoptosis, and inhibited the ratio of phospho-Akt/protein kinase B and phospho-mammalian target of rapamycin/mammalian target of rapamycin. In conclusion, these data suggest that lupeol may play a therapeutic role in ovarian cancer.


2011 ◽  
Vol 18 (5) ◽  
pp. 541-554 ◽  
Author(s):  
Alessia Di Florio ◽  
Laura Adesso ◽  
Simona Pedrotti ◽  
Gabriele Capurso ◽  
Emanuela Pilozzi ◽  
...  

Pancreatic endocrine tumours (PETs) are rare and heterogeneous neoplasms, often diagnosed at metastatic stage, for which no cure is currently available. Recently, activation of two pathways that support proliferation and invasiveness of cancer cells, the Src family kinase (SFK) and mammalian target of rapamycin (mTOR) pathways, was demonstrated in PETs. Since both pathways represent suitable targets for therapeutic intervention, we investigated their possible interaction in PETs. Western blot and immunofluorescence analyses indicated that SFK and mTOR activity correlate in PET cell lines. We also found that SFKs coordinate cell adhesion and spreading with activation of the mTOR pathway in PET cells. Live cell metabolic labelling and biochemical studies demonstrated that SFK activity enhance mTOR-dependent translation initiation. Furthermore, microarray analysis of the mRNAs associated with polyribosomes revealed that SFKs regulate mTOR-dependent translation of specific transcripts, with an enrichment in mRNAs encoding cell cycle proteins. Importantly, a synergic inhibition of proliferation was observed in PET cells concomitantly treated with SFK and mTOR inhibitors, without activation of the phosphatidylinositol 3-kinase/AKT pro-survival pathway. Tissue microarray analysis revealed activation of Src and mTOR in some PET samples, and identified phosphorylation of 4E-BP1 as an independent marker of poor prognosis in PETs. Thus, our work highlights a novel link between the SFK and mTOR pathways, which regulate the translation of mRNAs for cell cycle regulators, and suggest that crosstalk between these pathways promotes PET cell proliferation.


2011 ◽  
Vol 39 (2) ◽  
pp. 451-455 ◽  
Author(s):  
Carlos Garcia-Echeverria

Substantial drug discovery efforts have been devoted, over the last few years, to identifying and developing mTOR (mammalian target of rapamycin) kinase modulators. This has resulted in a number of mTOR inhibitors with different mechanisms of action and/or distinct protein and lipid kinase selectivity profiles. As briefly reviewed in the present paper, these compounds have provided us with a better understanding of the roles of mTOR and other phosphoinositide 3-kinase/mTOR pathway components in human cancer biology, and a few of them have already demonstrated clinical benefit in cancer patients.


2020 ◽  
Vol 44 (7-8) ◽  
pp. 393-402
Author(s):  
Minhang Xin ◽  
Hui-Yan Wang ◽  
Hao Zhang ◽  
Ying Shen ◽  
San-Qi Zhang

Twenty-five novel 2,4,6-trisubstituted triazines were synthesized and biologically evaluated. Most of the compounds synthesized showed good antiproliferative activity against HCT-116 and MCF-7. Compounds B18 and B19 showed the best antiproliferative activity. Further study showed B18 and B19 inhibited four phosphoinositide 3-kinase isoforms and mammalian target of rapamycin with good potency. These results demonstrate that 2,4,6-trisubstituted triazines are potentially useful phosphoinositide 3-kinase inhibitors for the development of new anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document