An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability

Bioprinting ◽  
2020 ◽  
Vol 20 ◽  
pp. e00093 ◽  
Author(s):  
Selwa Boularaoui ◽  
Ghada Al Hussein ◽  
Kamran A. Khan ◽  
Nicolas Christoforou ◽  
Cesare Stefanini
Keyword(s):  
Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 346
Author(s):  
Hui Ling Ma ◽  
Ana Carolina Urbaczek ◽  
Fayene Zeferino Ribeiro de Souza ◽  
Paulo Augusto Gomes Garrido Carneiro Leão ◽  
Janice Rodrigues Perussi ◽  
...  

Microfluidics is an essential technique used in the development of in vitro models for mimicking complex biological systems. The microchip with microfluidic flows offers the precise control of the microenvironment where the cells can grow and structure inside channels to resemble in vivo conditions allowing a proper cellular response investigation. Hence, this study aimed to develop low-cost, simple microchips to simulate the shear stress effect on the human umbilical vein endothelial cells (HUVEC). Differentially from other biological microfluidic devices described in the literature, we used readily available tools like heat-lamination, toner printer, laser cutter and biocompatible double-sided adhesive tapes to bind different layers of materials together, forming a designed composite with a microchannel. In addition, we screened alternative substrates, including polyester-toner, polyester-vinyl, glass, Permanox® and polystyrene to compose the microchips for optimizing cell adhesion, then enabling these microdevices when coupled to a syringe pump, the cells can withstand the fluid shear stress range from 1 to 4 dyne cm2. The cell viability was monitored by acridine orange/ethidium bromide (AO/EB) staining to detect live and dead cells. As a result, our fabrication processes were cost-effective and straightforward. The materials investigated in the assembling of the microchips exhibited good cell viability and biocompatibility, providing a dynamic microenvironment for cell proliferation. Therefore, we suggest that these microchips could be available everywhere, allowing in vitro assays for daily laboratory experiments and further developing the organ-on-a-chip concept.


Author(s):  
Amirhossein Bakhtiiari ◽  
Rezvan Khorshidi ◽  
Fatemeh Yazdian ◽  
Hamid Rashedi ◽  
Meisam Omidi

In recent decades, three dimensional (3D) bio-printing technology has found widespread use in tissue engineering applications. The aim of this study is to scrutinize different parameters of the bioprinter – with the help of simulation software – to print a hydrogel so much so that avoid high amounts of shear stress which is detrimental for cell viability and cell proliferation. Rheology analysis was done on several hydrogels composed of different percentages of components: alginate, collagen, and gelatin. The results have led to the combination of percentages collagen:alginate:gelatin (1:4:8)% as the best condition which makes sol-gel transition at room temperature possible. The results have shown the highest diffusion rate and cell viability for the cross-linked sample with 1.5% CaCl2 for the duration of 1 h. Finally, we have succeeded in printing the hydrogel that is mechanically strong with suitable degradation rate and cell viability.


Bioprinting ◽  
2021 ◽  
pp. e00184
Author(s):  
Selwa Boularaoui ◽  
Aya Shanti ◽  
Kamran A. Khan ◽  
Saverio Iacoponi ◽  
Nicolas Christoforou ◽  
...  

Author(s):  
Mingji Wei ◽  
Rongbiao Zhang ◽  
Fei Zhang ◽  
Yecheng Zhang

Cell viability evaluation is significantly meaningful for cellular assays. Some cells with weak viability are easily killed in the detection of anti-cancer drugs, while others with strong viability survive and proliferate, ultimately leading to the treatment failure or the inaccuracy of biological assays. Accurately evaluating cell viability heterogeneity still remains difficult. This paper proposed a multi-physical property information fusion method for evaluating cell viability heterogeneity based on multiple linear regression (MLR) on a single-channel integrated microfluidic chip. In this method, adhesion strengths τN, that are defined as the magnitude of shear stress needed to detach (100-N) % of cell population, were extracted as the independent variables of MLR model by calculating the linear fitting of the impedance-response curves for shear stress (cell detachment assay). Besides, by calculating the non-linear fitting of the drug dose-response curves for cancer cells (IC50 assay), the half-maximal inhibitory concentration (IC50) was extracted as the dependent variables of MLR model. The results show that the mean relative error of our fusion method reduces by 17.87% and 59.66% compared with the single-parameter method and the cell counting method. Moreover, through the theoretical analysis of the drug resistance heterogeneity model, it proved that there is a qualitative relationship between the cell adhesion strength and cell viability heterogeneity, which provides a theoretical basis for our fusion method.


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194170 ◽  
Author(s):  
Alexandra R. Hyler ◽  
Nicolaas C. Baudoin ◽  
Megan S. Brown ◽  
Mark A. Stremler ◽  
Daniela Cimini ◽  
...  

Author(s):  
Valérie Gisèle Gelbgras ◽  
Christophe E Wylock ◽  
Jean-Christophe Drugmand ◽  
Benoît Haut

During a cell culture in a bioreactor, the cells are exposed to the shear stresses mainly generated in the culture medium by the mixing device. Beyond a critical shear stress, this exposition induces cell damages. Therefore, the limitation of the shear stress is an important criterion for the design of bioreactors. An accurate modeling of the flow and the induced shear stresses in the medium is a tool to achieve an effective design of a bioreactor. In this work, a new design of a mixing device is considered. The aims of this work are to develop a methodology to study the flow and the induced shear stresses in the device, to study and to model the relation between the flow, the induced shear stresses and the cell viability, to use the developed model as an optimization tool, and to study the design of the bioreactor mixing device and its scale-up. In a first step, the flow and the induced shear stresses in the device are simulated by Computational Fluid Dynamics. In a second step, the model of the influence of the flow and the induced shear stresses on the cell viability is established by a comparison between the computed flow and the induced shear stresses and experimental measurements of cellular viabilities for different impeller rotation speeds. Finally, the influence of another design of the mixing device on the cell viability is studied.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Claudia Bergemann ◽  
Patrick Elter ◽  
Regina Lange ◽  
Volker Weißmann ◽  
Harald Hansmann ◽  
...  

Studies on bone cell ingrowth into synthetic, porous three-dimensional (3D) implants showed difficulties arising from impaired cellular proliferation and differentiation in the core region of these scaffolds with increasing scaffold volumein vitro. Therefore, we developed anin vitroperfusion cell culture module, which allows the analysis of cells in the interior of scaffolds under different medium flow rates. For each flow rate the cell viability was measured and compared with results from computer simulations that predict the local oxygen supply and shear stress inside the scaffold based on the finite element method. We found that the local cell viability correlates with the local oxygen concentration and the local shear stress. On the one hand the oxygen supply of the cells in the core becomes optimal with a higher perfusion flow. On the other hand shear stress caused by high flow rates impedes cell vitality, especially at the surface of the scaffold. Our results demonstrate that both parameters must be considered to derive an optimal nutrient flow rate.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 772 ◽  
Author(s):  
Thammawit Suwannaphan ◽  
Werayut Srituravanich ◽  
Achariya Sailasuta ◽  
Prapruddee Piyaviriyakul ◽  
Suchaya Bhanpattanakul ◽  
...  

Inertial separation techniques in a microfluidic system have been widely employed in the field of medical diagnosis for a long time. Despite no requirement of external forces, it requires strong hydrodynamic forces that could potentially cause cell damage or loss during the separation process. This might lead to the wrong interpretation of laboratory results since the change of structures and functional characteristics of cells due to the hydrodynamic forces that occur are not taken into account. Therefore, it is important to investigate the cell viability and damage along with the separation efficacy of the device in the design process. In this study, two inertial separation techniques—spiral microchannel and contraction-expansion array (CEA)—were examined to evaluate cell viability, morphology and intracellular structures using a trypan blue assay (TB), Scanning Electron Microscopy (SEM) and Wright-Giemsa stain. We discovered that cell loss was not significantly found in a feeding system, i.e., syringe, needle and tube, but mostly occurred in the inertial separation devices while the change of cell morphology and intracellular structures were found in the feeding system and inertial separation devices. Furthermore, percentage of cell loss was not significant in both devices (7–10%). However, the change of cell morphology was considerably increased (30%) in spiral microchannel (shear stress dominated) rather than in CEA (12%). In contrast, the disruption of intracellular structures was increased (14%) in CEA (extensional and shear stress dominated equally) rather than spiral microchannel (2%). In these experiments, leukocytes of canine were used as samples because their sizes are varied in a range between 7–12 µm, and they are commonly used as a biomarker in many clinical and medical applications.


2018 ◽  
Vol 4 (4) ◽  
pp. 045028 ◽  
Author(s):  
Jia Shi ◽  
Bin Wu ◽  
Shihao Li ◽  
Jinchun Song ◽  
Bin Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document