scholarly journals Unique Spatial Immune Profiling in Pancreatic Ductal Adenocarcinoma with Enrichment of Exhausted and Senescent T Cells and Diffused CD47-SIRPα Expression

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1825 ◽  
Author(s):  
Alexandros Papalampros ◽  
Michail Vailas ◽  
Konstantinos Ntostoglou ◽  
Maria Lopez Chiloeches ◽  
Stratigoula Sakellariou ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is resistant to single-agent immunotherapies. To understand the mechanisms leading to the poor response to this treatment, a better understanding of the PDAC immune landscape is required. The present work aims to study the immune profile in PDAC in relationship to spatial heterogeneity of the tissue microenvironment (TME) in intact tissues. Methods: Serial section and multiplex in situ analysis were performed in 42 PDAC samples to assess gene and protein expression at single-cell resolution in the: (a) tumor center (TC), (b) invasive front (IF), (c) normal parenchyma adjacent to the tumor, and (d) tumor positive and negative draining lymph nodes (LNs). Results: We observed: (a) enrichment of T cell subpopulations with exhausted and senescent phenotype in the TC, IF and tumor positive LNs; (b) a dominant type 2 immune response in the TME, which is more pronounced in the TC; (c) an emerging role of CD47-SIRPα axis; and (d) a similar immune cell topography independently of the neoadjuvant chemotherapy. Conclusion: This study reveals the existence of dysfunctional T lymphocytes with specific spatial distribution, thus opening a new dimension both conceptually and mechanistically in tumor-stroma interaction in PDAC with potential impact on the efficacy of immune-regulatory therapeutic modalities.

Author(s):  
Sen Yang ◽  
Qiaofei Liu ◽  
Quan Liao

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy. PDAC is only cured by surgical resection in its early stage, but there remains a relatively high possibility of recurrence. The development of PDAC is closely associated with the tumor microenvironment. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations in the pancreatic tumor stroma. TAMs are inclined to M2 deviation in the tumor microenvironment, which promotes and supports tumor behaviors, including tumorigenesis, immune escape, metastasis, and chemotherapeutic resistance. Herein, we comprehensively reviewed the latest researches on the origin, polarization, functions, and reprogramming of TAMs in PDAC.


2019 ◽  
Vol 9 (22) ◽  
pp. 4784
Author(s):  
Vietsch ◽  
Peran ◽  
Suker ◽  
van den Bosch ◽  
Sijde ◽  
...  

Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic KrasG12D/+; Trp53R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.


Author(s):  
Xuefei Liu ◽  
Ziwei Luo ◽  
Xuechen Ren ◽  
Zhihang Chen ◽  
Xiaoqiong Bao ◽  
...  

Background: Pancreatic ductal adenocarcinoma (PDAC) is dominated by an immunosuppressive microenvironment, which makes immune checkpoint blockade (ICB) often non-responsive. Understanding the mechanisms by which PDAC forms an immunosuppressive microenvironment is important for the development of new effective immunotherapy strategies.Methods: This study comprehensively evaluated the cell-cell communications between malignant cells and immune cells by integrative analyses of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC. A Malignant-Immune cell crosstalk (MIT) score was constructed to predict survival and therapy response in PDAC patients. Immunological characteristics, enriched pathways, and mutations were evaluated in high- and low MIT groups.Results: We found that PDAC had high level of immune cell infiltrations, mainly were tumor-promoting immune cells. Frequent communication between malignant cells and tumor-promoting immune cells were observed. 15 ligand-receptor pairs between malignant cells and tumor-promoting immune cells were identified. We selected genes highly expressed on malignant cells to construct a Malignant-Immune Crosstalk (MIT) score. MIT score was positively correlated with tumor-promoting immune infiltrations. PDAC patients with high MIT score usually had a worse response to immune checkpoint blockade (ICB) immunotherapy.Conclusion: The ligand-receptor pairs identified in this study may provide potential targets for the development of new immunotherapy strategy. MIT score was established to measure tumor-promoting immunocyte infiltration. It can serve as a prognostic indicator for long-term survival of PDAC, and a predictor to ICB immunotherapy response.


2021 ◽  
Author(s):  
Katrin J Ciecielski ◽  
Antonio Mulero-Sanchez ◽  
Alexandra Berninger ◽  
Laura Ruiz Canas ◽  
Astrid Bosma ◽  
...  

Mutant KRAS is present in over 90% of pancreatic as well as 30-40% of lung and colorectal cancers and is one of the most common oncogenic drivers. Despite decades of research and the recent emergence of isoform-specific KRASG12C-inhibitors, most mutant KRAS isoforms, including the ones frequently associated with pancreatic ductal adenocarcinoma (PDAC), cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive mechanisms leading to tumor recurrence or resistance. We report here on the combined inhibition of SHP2, a non-receptor tyrosine phosphatase upstream of KRAS, and ERK, a serine/threonine kinase and a key molecule downstream of KRAS in PDAC. This combination shows synergistic anticancer activity in vitro, superior disruption of the MAPK pathway, and significantly increased apoptosis induction compared to single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination. Concurrent inhibition of SHP2 and ERK induces significant tumor regression in multiple PDAC mouse models. Finally, we show evidence that 18F-FDG PET scans can be used to detect and predict early drug responses in animal models. Based on these compelling results, we will investigate this drug combination in a clinical trial (SHERPA, SHP2 and ERK inhibition in pancreatic cancer, NCT04916236), enrolling patients with KRAS-mutant PDAC.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 565
Author(s):  
Sona Ciernikova ◽  
Maria Novisedlakova ◽  
Danka Cholujova ◽  
Viola Stevurkova ◽  
Michal Mego

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors due to the absence of biomarkers for early-stage detection and poor response to therapy. Since mounting evidence supports the role of microbiota composition in tumorigenesis and cancer treatment, the link between microbiome and PDAC has been described. In this review, we summarize the current knowledge regarding the impact of the gut and oral microbiome on the risk of PDAC development. Microenvironment-driven therapy and immune system interactions are also discussed. More importantly, we provide an overview of the clinical trials evaluating the microbiota role in the risk, prognosis, and treatment of patients suffering from PDAC and solid tumors. According to the research findings, immune tolerance might result from the microbiota-derived remodeling of pancreatic tumor microenvironment. Thus, microbiome profiling and targeting represent the potential trend to enhance antitumor immunity and improve the efficacy of PDAC treatment.


HPB ◽  
2018 ◽  
Vol 20 ◽  
pp. S24-S25
Author(s):  
M.H. Gerber ◽  
B.B. DiVita ◽  
D. Delitto ◽  
J.L. Cioffi ◽  
S.M. Wallet ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15779-e15779
Author(s):  
Mohamad Bassam Sonbol ◽  
Belal Firwana ◽  
Zhen Wang ◽  
Daniel H. Ahn ◽  
Mitesh J. Borad ◽  
...  

e15779 Background: There is paucity of data regarding the best available second-line treatment following progression on gemcitabine-based regimens in metastatic pancreatic ductal adenocarcinoma (PDAC). While a Nanoliposomal formulation of irinotecan (MM398) is considered a standard of care, there is conflicting data relating to the use of oxaliplatin in this setting. We performed a meta-analysis to determine the effectiveness of adding oxaliplatin (OX) or various irinotecan (IRI) formulations to a fluoropyrimidine (FP) as a second-line in PDAC patients. Methods: We searched different databases, including PubMed, Embase and Cochrane, to identify randomized controlled trials comparing FP monotherapy to FP combination therapy that includes either oxaliplatin (FPOX) or various irinotecan formulations (FPIRI) in PDAC patients who progressed after first-line treatment. Secondary analyses were planned to assess the effectiveness of FPOX and FPIRI compared to FP. Outcomes of interest included overall survival (OS) and progression-free survival (PFS). The overall effect was pooled using the DerSimonian and Laird random effects models. Results: Five studies (2 with FPIRI and 3 with FPOX) with 895 patients were identified. Patients randomized to FPIRI/FPOX had a significantly improved PFS (HR = 0.74, CI 0.62 to 0.89) and a trend towards an improved OS compared to FP monotherapy (HR = 0.88, CI 0.65 to 1.19). When comparing FPIRI to FP, there was an improvement in both PFS (HR = 0.64, CI 0.47 to 0.87) and OS (HR = 0.70, CI 0.55 to 0.89) in patients treated with the combination. Conversely, FPOX showed only a modest improvement in PFS (HR = 0.81, CI 0.67, 0.97) with no improvement in OS (HR = 1.03, CI 0.64 to 1.67). Conclusions: Combination chemotherapy with oxaliplatin or various irinotecan formulations seem to improve PFS vs. single agent FP. FPIRI, but not FPOX seem to confer an OS advantage. Oxaliplatin with FP following gemcitabine failure may need further confirmatory studies to establish its role in refractory pancreas cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Clayton S. Lewis ◽  
Aniruddha Karve ◽  
Kateryna Matiash ◽  
Timothy Stone ◽  
Jingxing Li ◽  
...  

In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a KD in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (~ 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.


Sign in / Sign up

Export Citation Format

Share Document