Contemporary and past aeolian deposition rates in periglacial conditions (Ebba Valley, central Spitsbergen)

CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105974
Author(s):  
Krzysztof G. Rymer ◽  
Grzegorz Rachlewicz ◽  
Agata Buchwal ◽  
Arnaud J.A.M. Temme ◽  
Tony Reimann ◽  
...  
Keyword(s):  
2016 ◽  
Vol 28 (2) ◽  
pp. 99-133 ◽  
Author(s):  
Arnab Dasgupta ◽  
D.K. Chandraker ◽  
S. P. Walker ◽  
P. K. Vijayan

Author(s):  
Michael DiBattista ◽  
Kimball Skinner ◽  
Rick Kneedler ◽  
Leonid Vasilvey ◽  
Lukas Drybcak ◽  
...  

Abstract Circuit edit and failure analysis require tungsten deposition parameters to accomplish different goals. Circuit edit applications desire low resistivity values for rewiring, while failure analysis requires high deposition rates for capping layers. Tungsten deposition can be a well controlled process for a variety of beam parameters. For circuit edit, tungsten resistivity approaching below 150 µohm-cm and 50 μm3/nC is predicted. Material deposition rates of 80 μm3/nC can be achieved with reasonable pattern accuracy using defocus as a parameter.


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


2021 ◽  
Vol 11 (4) ◽  
pp. 1827
Author(s):  
Gaetano Settimo ◽  
Maria Eleonora Soggiu ◽  
Marco Inglessis ◽  
Giovanni Marsili ◽  
Pasquale Avino

In recent years, studies on climate change have focused on reducing greenhouse gas emissions emitted by various civil and industrial processes. This study highlights the importance of characterizing the total deposition rates of airborne particles (bulk atmospheric deposition) in the surroundings of an industrial area along the north cost of the Lazio Region in Italy, to deepen knowledge about the potential impact of emissions from the coal-fired thermoelectric (CTE) power plant and other possible sources existing in the surrounding area. Four sampling sites were identified, and the monitoring plan was performed a yearlong with monthly collecting observation. The deposition samples were collected monthly and processed for determining organic (polychlorinated dibenzo-para-dioxins, PCDDs; polychlorinated dibenzofurans, PCDFs; dioxin-like polychlorinated biphenyls, DL-PCBs; polycyclic aromatic hydrocarbons, PAHs) and inorganic (metals) substances. The samples were collected monthly and sent for chemical characterization. In Europe and Italy, no reference values have been given for the deposition rates of chemicals, while some European countries have determined reference/guide values to which the authors will refer in this study. Therefore, the analytical results show that the deposition rates for PCDD/Fs and DL-PCBs are lower with respects guide values defined by Germany and Belgium; PAHs values are in line with those measured in other rural-type sites, while for metals the analytical results show a situation between rural and urban area. The approach used in this study can help to identify reference values for Italy in deposition rates, with the aim both to characterize the dynamic of pollution in area with multiple risk factors and to describe and protect human health from environmental exposures caused by the contamination of the food chain.


1999 ◽  
Vol 557 ◽  
Author(s):  
S.J. Jones ◽  
R. Crucet ◽  
X. Deng ◽  
J. Doehler ◽  
R. Kopf ◽  
...  

AbstractUsing a Gas Jet thin film deposition technique, microcrystalline silicon (μc-Si) materials were prepared at rates as high as 15-20 Å/s. The technique involves the use of a gas jet flow that is subjected to a high intensity microwave source. The quality of the material has been optimized through the variation of a number of deposition conditions including the substrate temperature, the gas flows, and the applied microwave power. The best films were made using deposition rates near 16 Å/s. These materials have been used as i-layers for red light absorbing, nip single-junction solar cells. Using a 610nm cutoff filter which only allows red light to strike the device, pre-light soaked currents as high as 10 mA/cm2 and 2.2-2.3% red-light pre-light soaked peak power outputs have been obtained for cells with i-layer thicknesses near 1 micron. This compares with currents of 10-11 mA/cm2 and 4% initial red-light peak power outputs obtained for high efficiency amorphous silicon germanium alloy (a-SiGe:H) devices. The AM1.5 white light efficiencies for these microcrystalline cells are 5.9-6.0%. While the efficiencies for the a-SiGe:H cells degrade by 15-20% after long term light exposure, the efficiencies for the microcrystalline cells before and after prolonged light exposure are similar, within measurement error. Considering these results, the Gas Jet deposition method is a promising technique for the deposition of μc-Si solar cells due to the ability to achieve reasonable stable efficiencies for cells at i-layer deposition rates (16 Å/s) which make large-scale production economically feasible.


2007 ◽  
Vol 992 ◽  
Author(s):  
Christos F. Karanikas ◽  
James J. Watkins

AbstractThe kinetics of the deposition of ruthenium thin films from the hydrogen assisted reduction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)ruthenium(II), [Ru(tmhd)2cod], in supercritical carbon dioxide was studied in order to develop a rate expression for the growth rate as well as to determine a mechanism for the process. The deposition temperature was varied from 240°C to 280°C and the apparent activation energy was 45.3 kJ/mol. Deposition rates up to 30 nm/min were attained. The deposition rate dependence on precursor concentrations between 0 and 0.2 wt. % was studied at 260°C with excess hydrogen and revealed first order deposition kinetics with respect to precursor at concentrations lower then 0.06 wt. % and zero order dependence at concentrations above 0.06 wt. %. The effect of reaction pressure on the growth rate was studied at a constant reaction temperature of 260°C and pressures between 159 bar to 200 bar and found to have no measurable effect on the growth rate.


1999 ◽  
Vol 72 (4) ◽  
pp. 329-340 ◽  
Author(s):  
Yong Cheng Chen ◽  
E.M. Barber ◽  
Yunahui Zhang ◽  
R.W. Besant ◽  
S. Sokhansanj

Sign in / Sign up

Export Citation Format

Share Document