Interfacial synthesis of crystalline quasi-two-dimensional polyaniline thin films for high-performance flexible on-chip micro-supercapacitors

Author(s):  
Tao Zhang ◽  
Panpan Zhang ◽  
Zhongquan Liao ◽  
Faxing Wang ◽  
Jinhui Wang ◽  
...  
Author(s):  
Chaochao Qin ◽  
Liu-Hong Xu ◽  
Zhongpo Zhou ◽  
Jian Song ◽  
Shu-Hong Ma ◽  
...  

Quasi-two dimensional perovskites have emerged as candidates of high-performance materials for various optoelectronic applications due to the unique excitonic properties in their multilayer structures. Both Dion–Jacobson perovskites and Ruddlesden-Popper phases...


RSC Advances ◽  
2014 ◽  
Vol 4 (47) ◽  
pp. 24773-24776 ◽  
Author(s):  
Changzhou Yuan ◽  
Longhai Zhang ◽  
Linrui Hou ◽  
Jingdong Lin ◽  
Gang Pang

2D poly(2,5-dimethoxyaniline) nanosheets were designed via a green interfacial strategy, and demonstrated large specific capacitance and striking stability at high rates as a pseudo-capacitive electrode.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhuang-Hao Zheng ◽  
Hua-Bin Lan ◽  
Zheng-Hua Su ◽  
Huan-Xin Peng ◽  
Jing-Ting Luo ◽  
...  

AbstractHybrid two-dimensional (2D) halide perovskites has been widely studied due to its potential application for high performance perovskite solar cells. Understanding the relationship between microstructural and opto-electronic properties is very important for fabricating high-performance 2D perovskite solar cell. In this work, the effect of solvent annealing on grain growth was investigated to enhance the efficiency of photovoltaic devices with 2D perovskite films based on (BA)2(MA)3Pb4I13 prepared by single-source thermal evaporation. Results show that solvent annealing with the introduction of solvent vapor can effectively enhance the crystallization of the (BA)2(MA)3Pb4I13 thin films and produce denser, larger-crystal grains. The thin films also display a favorable band gap of 1.896 eV, which benefits for increasing the charge-diffusion lengths. The solvent-annealed (BA)2(MA)3Pb4I13 thin-film solar cell prepared by single-source thermal evaporation shows an efficiency range of 2.54–4.67%. Thus, the proposed method can be used to prepare efficient large-area 2D perovskite solar cells.


2017 ◽  
Author(s):  
Varun Bheemireddy

The two-dimensional(2D) materials are highly promising candidates to realise elegant and e cient transistor. In the present letter, we conjecture a novel co-planar metal-insulator-semiconductor(MIS) device(capacitor) completely based on lateral 2D materials architecture and perform numerical study of the capacitor with a particular emphasis on its di erences with the conventional 3D MIS electrostatics. The space-charge density features a long charge-tail extending into the bulk of the semiconductor as opposed to the rapid decay in 3D capacitor. Equivalently, total space-charge and semiconductor capacitance densities are atleast an order of magnitude more in 2D semiconductor. In contrast to the bulk capacitor, expansion of maximum depletion width in 2D semiconductor is observed with increasing doping concentration due to lower electrostatic screening. The heuristic approach of performance analysis(2D vs 3D) for digital-logic transistor suggest higher ON-OFF current ratio in the long-channel limit even without third dimension and considerable room to maximise the performance of short-channel transistor. The present results could potentially trigger the exploration of new family of co-planar at transistors that could play a signi significant role in the future low-power and/or high performance electronics.<br>


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


2014 ◽  
Vol 27 (7) ◽  
pp. 669-675 ◽  
Author(s):  
Feng Yue ◽  
Runfeng Li ◽  
Tian Chen ◽  
Jun Liu ◽  
Peng Chen ◽  
...  
Keyword(s):  

2020 ◽  
Vol 96 (3s) ◽  
pp. 585-588
Author(s):  
С.Е. Фролова ◽  
Е.С. Янакова

Предлагаются методы построения платформ прототипирования высокопроизводительных систем на кристалле для задач искусственного интеллекта. Изложены требования к платформам подобного класса и принципы изменения проекта СнК для имплементации в прототип. Рассматриваются методы отладки проектов на платформе прототипирования. Приведены результаты работ алгоритмов компьютерного зрения с использованием нейросетевых технологий на FPGA-прототипе семантических ядер ELcore. Methods have been proposed for building prototyping platforms for high-performance systems-on-chip for artificial intelligence tasks. The requirements for platforms of this class and the principles for changing the design of the SoC for implementation in the prototype have been described as well as methods of debugging projects on the prototyping platform. The results of the work of computer vision algorithms using neural network technologies on the FPGA prototype of the ELcore semantic cores have been presented.


Sign in / Sign up

Export Citation Format

Share Document