Insight into the efficient co-removal of Cr(VI) and Cr(III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane

2021 ◽  
Vol 404 ◽  
pp. 126546 ◽  
Author(s):  
Yanhong Zhang ◽  
Xiaoming Xu ◽  
Cailiang Yue ◽  
Li Song ◽  
Yingzhi Lv ◽  
...  
Author(s):  
Rui Zhao ◽  
Wei Ding ◽  
Manli Sun ◽  
Liuwei Yang ◽  
Bingzhi Liu ◽  
...  
Keyword(s):  

Author(s):  
Olga V. Moroz ◽  
Lukasz F. Sobala ◽  
Elena Blagova ◽  
Travis Coyle ◽  
Wei Peng ◽  
...  

The enzymatic hydrolysis of complex plant biomass is a major societal goal of the 21st century in order to deliver renewable energy from nonpetroleum and nonfood sources. One of the major problems in many industrial processes, including the production of second-generation biofuels from lignocellulose, is the presence of `hemicelluloses' such as xylans which block access to the cellulosic biomass. Xylans, with a polymeric β-1,4-xylose backbone, are frequently decorated with acetyl, glucuronyl and arabinofuranosyl `side-chain' substituents, all of which need to be removed for complete degradation of the xylan. As such, there is interest in side-chain-cleaving enzymes and their action on polymeric substrates. Here, the 1.25 Å resolution structure of the Talaromyces pinophilus arabinofuranosidase in complex with the inhibitor AraDNJ, which binds with a K d of 24 ± 0.4 µM, is reported. Positively charged iminosugars are generally considered to be potent inhibitors of retaining glycosidases by virtue of their ability to interact with both acid/base and nucleophilic carboxylates. Here, AraDNJ shows good inhibition of an inverting enzyme, allowing further insight into the structural basis for arabinoxylan recognition and degradation.


2021 ◽  
Author(s):  
Haon Futamata ◽  
Masahiro Fukuda ◽  
Rie Umeda ◽  
Keitaro Yamashita ◽  
Satoe Takahashi ◽  
...  

Abstract Outer hair cell electromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized human prestin (hPresTS), complexed with chloride, sulfate, or salicylate at 3.52–3.61 Å resolutions, revealing a crossed dimeric arrangement. The central positively-charged cavity allows flexible binding of various anion species, resulting in distinct modulations of nonlinear capacitance (NLC), playing an important role in electromotility. Comparisons of these hPresTS structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insight into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.


2001 ◽  
Vol 118 (4) ◽  
pp. 391-406 ◽  
Author(s):  
Scott A. John ◽  
James N. Weiss ◽  
Bernard Ribalet

KATP channels, comprised of the pore-forming protein Kir6.x and the sulfonylurea receptor SURx, are regulated in an interdependent manner by adenine nucleotides, PIP2, and sulfonylureas. To gain insight into these interactions, we investigated the effects of mutating positively charged residues in Kir6.2, previously implicated in the response to PIP2, on channel regulation by adenine nucleotides and the sulfonylurea glyburide. Our data show that the Kir6.2 “PIP2-insensitive” mutants R176C and R177C are not reactivated by MgADP after ATP-induced inhibition and are also insensitive to glyburide. These results suggest that R176 and R177 are required for functional coupling to SUR1, which confers MgADP and sulfonylurea sensitivity to the KATP channel. In contrast, the R301C and R314C mutants, which are also “PIP2-insensitive,” remained sensitive to stimulation by MgADP in the absence of ATP and were inhibited by glyburide. Based on these findings, as well as previous data, we propose a model of the KATP channel whereby in the presence of ATP, the R176 and R177 residues on Kir6.2 form a specific site that interacts with NBF1 bound to ATP on SUR1, promoting channel opening by counteracting the inhibition by ATP. This interaction is facilitated by binding of MgADP to NBF2 and blocked by binding of sulfonylureas to SUR1. In the absence of ATP, since KATP channels are not blocked by ATP, they do not require the counteracting effect of NBF1 interacting with R176 and R177 to open. Nevertheless, channels in this state remain activated by MgADP. This effect may be explained by a direct stimulatory interaction of NBF2/MgADP moiety with another region of Kir6.2 (perhaps the NH2 terminus), or by NBF2/MgADP still promoting a weak interaction between NBF1 and Kir6.2 in the absence of ATP. The region delimited by R301 and R314 is not involved in the interaction with NBF1 or NBF2, but confers additional PIP2 sensitivity.


2002 ◽  
Vol 283 (2) ◽  
pp. C646-C650 ◽  
Author(s):  
Hong-Long Ji ◽  
Catherine M. Fuller ◽  
Dale J. Benos

The hypothesis that there is a highly conserved, positively charged region distal to the second transmembrane domain in α-ENaC (epithelial sodium channel) that acts as a putative receptor site for the negatively charged COOH-terminal β- and γ-ENaC tails was tested in mutagenesis experiments. After expression in Xenopus oocytes, α-ENaC constructs in which positively charged arginine residues were converted into negatively charged glutamic acids could not be inhibited by blocking peptides. These observations provide insight into the gating machinery of ENaC.


2021 ◽  
Author(s):  
DIPANJAN SEN ◽  
Arpan De ◽  
Bijoy Goswami ◽  
Sharmistha Shee ◽  
Subir Kumar Sarkar

Abstract In this work, we have examined and proposed a dielectrically modulated biosensor based on the dual trench transparent gate engineered MOSFET (DM DT GE-MOSFET) for label-free detection of biomolecules with enhanced sensitivity and efficiency. Different sensing parameters such as the ION/IOFF, threshold voltage shift have been evaluated to validate the sensing metric for the proposed device. Additionally, the SVth (Vth Sensitivity) has been also analyzed by considering the charged (positive and negative) biomolecules. In addition to this, the RF sensing parameters such as the transconductance gain and cut-off frequency have been also taken into account to provide a better insight into the sensitivity analysis of the proposed device. Furthermore, the linearity, distortion and noise immunity of the device has been evaluated to check the overall performance of the biosensor at high frequency (GHz). Moreover, the results indicate that, the proposed biosensor exhibits a SVth of 0.68 for the positively charged biomolecules at a very low drain bias (0.2 V). Therefore, the proposed device can be used as an alternative to the conventional FET-based biosensors.


2003 ◽  
Vol 792 ◽  
Author(s):  
Marion. A. Stevens-Kalceff ◽  
S. Rubanov ◽  
P. R. Munroe

ABSTRACTFocused Ion Beam (FIB) systems employ a finely focussed beam of positively charged ions to process materials. Ion induced charging effects in non-conductive materials have been confirmed using Scanning Surface Potential Microscopy (SSPM). Significant localized residual charging is observed within the ion implanted micro-volumes of non-conductive materials both prior to and following the onset of sputtering. Characteristic observed surface potentials associated with the resultant charging have been modelled, giving insight into the charging processes during implantation and sputtering. The results of this work have implications for the processing and microanalysis of non-conductive materials in FIB systems.


2015 ◽  
Vol 6 ◽  
pp. 300-312 ◽  
Author(s):  
Lisa Landgraf ◽  
Ines Müller ◽  
Peter Ernst ◽  
Miriam Schäfer ◽  
Christina Rosman ◽  
...  

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA) leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.


Sign in / Sign up

Export Citation Format

Share Document