The degradation mechanisms of Rhodopseudomonas palustris toward hexabromocyclododecane by time-course transcriptome analysis

2021 ◽  
pp. 130489
Author(s):  
Yi-Jie Li ◽  
Reuben Wang ◽  
Chung-Yen Lin ◽  
Shu-Hwa Chen ◽  
Chia-Hsien Chuang ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0149408 ◽  
Author(s):  
Yuan Gao ◽  
Xiaoli He ◽  
Bin Wu ◽  
Qiliang Long ◽  
Tianwei Shao ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3525 ◽  
Author(s):  
Jian Peng ◽  
Zheng Li ◽  
Yan Yang ◽  
Peng Wang ◽  
Xuan Zhou ◽  
...  

The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these changes has not been completely understood. In this study, the authors performed a time-course transcriptome analysis of the fat body during silkworm metamorphosis using RNA-sequencing. A total of 5217 differentially expressed genes (DEGs) were identified in the fat body at different developmental time points. DEGs involved in lipid synthesis and degradation were highly expressed at the third day of the last larval instar and during the prepupal-pupal transition, respectively. DEGs involved in the ecdysone signaling and bone morphogenetic protein (BMP) signaling pathways that modulate organ development exhibited a high expression level during the fat body remodeling process from prepupa to pupa. Intriguingly, the RNA interference-mediated knockdown of either decapentaplegic (Dpp) or protein 60A (Gbb), two DEGs involved in the BMP signaling pathway, inhibited fat body dissociation but promoted lipid mobilization, suggesting that the BMP signaling pathway not only is required for fat body remodeling, but also moderately inhibits lipid mobilization to ensure an appropriate lipid supply during the pupal-adult transition. In conclusion, the comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis.


2018 ◽  
Vol 178 (3) ◽  
pp. 1249-1268 ◽  
Author(s):  
Chiara Mizzotti ◽  
Lisa Rotasperti ◽  
Marco Moretto ◽  
Luca Tadini ◽  
Francesca Resentini ◽  
...  

2005 ◽  
Vol 71 (10) ◽  
pp. 5850-5857 ◽  
Author(s):  
David A. Wampler ◽  
Scott A. Ensign

ABSTRACT Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.


2020 ◽  
Vol 104 (13) ◽  
pp. 5873-5887
Author(s):  
Yinghui Ma ◽  
Lijun Li ◽  
Mukesh Kumar Awasthi ◽  
Haixia Tian ◽  
Meihuan Lu ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 270
Author(s):  
Seanna Hewitt ◽  
Benjamin Kilian ◽  
Tyson Koepke ◽  
Jonathan Abarca ◽  
Matthew Whiting ◽  
...  

The harvesting of sweet cherry (Prunus avium L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit–pedicel junction. The natural propensity for pedicel-–fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In ‘Skeena’, mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In ‘Bing’, mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in ‘Chelan’ the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.


Sign in / Sign up

Export Citation Format

Share Document