Circular economy is game-changing municipal wastewater treatment technology towards energy and carbon neutrality

2022 ◽  
Vol 429 ◽  
pp. 132114
Author(s):  
Xiaoyuan Zhang ◽  
Yu Liu
1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


2019 ◽  
pp. 169-177
Author(s):  
Ewa Sienkiewics ◽  
Piotr Kowalik ◽  
Stanislav Drzewinski ◽  
Klemens Herman

In the municipal wastewater treatment plant in Gdansk a biological treatment technology allowing removing of nutrients was launched recently. This will result in increasing of the volume of sludge from 27.3 t d.m./d now to about 45 t d.m./d in the near future. The analysis of various possibilities of sludge utilization was made. It was concluded that incineration of the sludge seems to be the most promising method, while the possibilities of application of sludge in agriculture, forestry or to land reclamation are limited. Therefore it is suggested that 90% of sludge should be incinerated and the remaining 10% - stabilized with lime and applicated to land reclamation. The ahses generated during the incineration of sludge should be deposited at the municipal waste dump, with possible phosphorus extraction in the future.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1479
Author(s):  
Shulian Wang ◽  
Lin Zhu ◽  
Bin Ji ◽  
Huan Hou ◽  
Yingqun Ma

The microalgal-bacterial granular sludge (MBGS) process is expected to meet the future requirements of municipal wastewater treatment technology for decontamination, energy consumption, carbon emission and resource recovery. However, little research on the performance of the MBGS process in outdoor treatment was reported. This study investigated the performance of the MBGS system in treating municipal wastewater under natural alternate day and night conditions in late autumn. The results showed that the average removal efficiencies of Chemical oxygen demand (COD), NH4+-N and PO43−-P on daytime before cooling (stage I, day 1−4) could reach 59.9% ± 6.8%, 78.1% ± 7.9% and 61.5% ± 4.5%, respectively, while the corresponding average removal efficiencies at night were 47.6% ± 8.0%, 56.5% ± 17.9% and 74.2% ± 7.6%, respectively. Due to the dramatic changes in environmental temperature and light intensity, the microbial biomass and system stability was affected with fluctuation in COD and PO43−-P removal. In addition, the relative abundance of filamentous microorganisms (i.e., Clostridia and Anaerolineae) decreased, while Chlorella maintained a dominant position in the eukaryotic community (i.e., relative abundance > 99%). This study can provide a theoretical basis and technical support for the further engineering application of the MBGS process.


2013 ◽  
Vol 807-809 ◽  
pp. 1245-1250
Author(s):  
Jing Li Gu ◽  
Jun Hong ◽  
Ling Wan ◽  
Fan Zhang ◽  
Nan Nan Yuan

A process of CAST, designing parameters and characteristics in the water treatment technology was introduced in this paper. The CAST was adopted to treat a scale of 3300m3/d of municipal wastewater and industrial effluent coming from a small town of Huojia county in Henan province. It is an innovative attempt to applied the CAST to a rural sewage treatment in the traditional water treatment field. What is more , after the chemical phosphorus removal and a sufficient reaction in the CAST tank, the effluent quality would ultimately meet level A while others could only meet level B in the state standard discharge standard of pollutants for municipal wastewater treatment plant (GB 18919-2002).


Author(s):  
M. Kevbrina ◽  
A. Akmentina ◽  
A. Dorofeev ◽  
A. Agarev ◽  
V. Aseeva ◽  
...  

Увеличение удельной биохимической мощности сооружений с применением так называемых гранулированных активных илов является одним из перспективных направлений развития технологий биологической очистки сточных вод. Гранулированные илы это микробные биоценозы, специализирующиеся на разложении и минерализации веществ, содержащихся в сточных водах. Отличие от обычных илов обусловлено двумя важными факторами: строением основной структурной единицы гранулированного ила гранулы, и высокой скоростью осаждения (до 20 м/ч). Это позволяет создавать в биореакторах очистки сточных вод дозы ила до 10 г/л. Представлены результаты разработки первой в РФ биотехнологии очистки городских сточных вод с применением гранулированного активного ила. Технология реализована на объектах АО Мосводоканал . Технология аэробной биологической очистки в реакторе последовательнопериодического действия с последовательной нитриденитрификацией и восходящим потоком сточной воды позволяет обеспечить качество очищенной воды, соответствующее нормативам предельно допустимых концентраций для сброса в водоемы рыбохозяйственного назначения. Техникоэкономическое сравнение разработанной технологии с технологией удаления биогенных элементов в аэротенке проточного типа показало, что затраты жизненного цикла сооружений с частично гранулированным активным илом в 1,4 раза меньше затрат традиционной технологии биологической очистки (для производительности 1000 м3/сут).Increasing the specific biochemical capacity of the facilities using the socalled granular activated sludge is one of the promising areas for the development of biological wastewater treatment technologies. Granular sludge is microbial biocenosis specializing in the decomposition and mineralization of substances present in wastewater. The main distinction from regular sludge is due to two important factors: the composition of the basic structural unit of granular sludge granules, and a high sedimentation rate (up to 20 m/h). This provides for developing sludge doses of up to 10 g/l in bioreactors of wastewater treatment. The results of the development of the first biotechnology in Russia for municipal wastewater treatment of using granular activated sludge are presented. The technology has been implemented at the facilities of Mosvodokanal JSC. The technology of aerobic biological treatment in a sequencing batch reactor with sequential nitridenitrification and an upward flow of wastewater provides for the quality of effluent that meets the standards for maximum permissible concentrations for discharge into fishery bodies. Technical and economic comparison of the developed technology with the technology of removing nutrients in flowthrough aeration tank showed that the life cycle costs of the facilities with partially granulated activated sludge are 1.4 times less than the costs of traditional biological treatment technology (for a capacity of 1000 m3/day).


2021 ◽  
Author(s):  
Małgorzata Jadwiga Kacprzak

Abstract Introduction of the circular economy package as a result of the necessity to protect natural resources has also forced a new approach for effective wastewater and biowaste treatment and management. Wastewater treatment plants (WWTPs) have become crucial elements of regional bioeconomy - mainly through energy (waste to energy) and matter (nutrients-energy-water) recovery as an element of sustainable development of a smart city. In Poland in 2019 operated 3278 municipal wastewater treatment plants. To achieve specific effluent goals for BOD, nitrogen and phosphorus, different adaptations and modifications have been made. Modernization of technological lines of wastewater treatment has led to a significant improvement in the quality of treated sewage, at the largest WWTPs in Warsaw, Cracow or Gdansk. Eleven WWTPs produce approx. 34% of the total volume of approx. 337 GWh of electricity from biogas in Poland. The potential of producing electricity from biogas in WWTPs in Poland can be estimated at approx. 700–850 GWh per year. According to the data of the Statistics Poland in 2019 in Poland approx. 25% of sewage sludge was used directly in agriculture and for land reclamation. Simultaneously more than 100 WWTPs produce compost at high quality. However only few produce organic/organic-mineral fertilizers, mainly with addition of calcium.


2012 ◽  
Vol 455-456 ◽  
pp. 1278-1284 ◽  
Author(s):  
Xiao Ya Sun ◽  
Hua Qiang Chu ◽  
Ya Lei Zhang ◽  
Xue Fei Zhou

The dynamic membrane reactor (DMBR) combined the advantages of both microbial reactor and dynamic membrane, and it’s a new municipal wastewater treatment technology. This paper summarized the technical processes, mechanisms, characteristics and application of DMBR, and the future research aspects of DMBR is also included.


Sign in / Sign up

Export Citation Format

Share Document