Rat bone marrow derived mesenchymal progenitor cells support mouse ES cell growth and germ-like cell differentiation

2009 ◽  
Vol 33 (3) ◽  
pp. 434-441 ◽  
Author(s):  
Guanghui Cui ◽  
Zhengyu Qi ◽  
Xin Guo ◽  
Jie Qin ◽  
Yaoting Gui ◽  
...  
2007 ◽  
Vol 313 (5) ◽  
pp. 1008-1023 ◽  
Author(s):  
Mitsutaka Shiota ◽  
Toshio Heike ◽  
Munetada Haruyama ◽  
Shiro Baba ◽  
Atsunori Tsuchiya ◽  
...  

1980 ◽  
Vol 152 (2) ◽  
pp. 419-437 ◽  
Author(s):  
I Goldschneider ◽  
D Metcalf ◽  
F Battye ◽  
T Mandel

A scheme is presented whereby pluripotent hemopoietic stem cells (PHSC) from rat bone marrow can be enriched 320-fold with the aid of the fluorescence- activated cell sorter. This scheme is based on the observations that PHSC are strongly positive for Thy-1 antigen (upper 10th percentile); have light- scattering properties (size distribution) between those of bone marrow lymphocytes and myeloid progenitor cells; and are relatively resistant to cortisone. It is estimated that PHSC may constitute 80 percent of the cells isolated according to these parameters. Candidate PHSC are described at the light and electron microscopic levels. At least two populations of accessory cells appear to influence the number and/or the nature of the hemopoietic colonies that form in the in vivo spleen colony-forming unit assay. Putative amplifier cells are strongly Thy-1(+) and cortisone sensitive; putative suppressor cells are weakly Thy-1(+) and cortisone resistant. Three subsets of granulocyte (G) -macrophage (M) progenitor cells (in vitro colony-forming cells [CFC]) are identified on the basis of relative fluorescence intensity for Thy-1 antigen: G-CFC are strongly Thy-l(+); M-CFC are weakly Thy-l(+); and cells that produce mixed G and M CFC have intermediate levels of Thy-1. GM-cluster-forming cells and mature G and M are Thy-1(-). The results suggest that G-CFC are bipotential cells that give rise to G and M-CFC; and that the latter produce mature M through a cluster- forming cell intermediate. Thy-1 antigen is also demonstrated on members of the eosinophil, megakaryocyte, erythrocyte, and lymphocyte cell series in rat bone marrow. In each instance, the relative concentration of Thy-1 antigen is inversely related to the state of cellular differentiation.


2018 ◽  
Vol 237 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Patricia K Russell ◽  
Salvatore Mangiafico ◽  
Barbara C Fam ◽  
Michele V Clarke ◽  
Evelyn S Marin ◽  
...  

It is well established that testosterone negatively regulates fat mass in humans and mice; however, the mechanism by which testosterone exerts these effects is poorly understood. We and others have shown that deletion of the androgen receptor (AR) in male mice results in a phenotype that mimics the three key clinical aspects of hypogonadism in human males; increased fat mass and decreased bone and muscle mass. We now show that replacement of the Ar gene specifically in mesenchymal progenitor cells (PCs) residing in the bone marrow of Global-ARKO mice, in the absence of the AR in all other tissues (PC-AR Gene Replacements), completely attenuates their increased fat accumulation. Inguinal subcutaneous white adipose tissue and intra-abdominal retroperitoneal visceral adipose tissue depots in PC-AR Gene Replacement mice were 50–80% lower than wild-type (WT) and 75–90% lower than Global-ARKO controls at 12 weeks of age. The marked decrease in subcutaneous and visceral fat mass in PC-AR Gene Replacements was associated with an increase in the number of small adipocytes and a healthier metabolic profile compared to WT controls, characterised by normal serum leptin and elevated serum adiponectin levels. Euglycaemic/hyperinsulinaemic clamp studies reveal that the PC-AR Gene Replacement mice have improved whole-body insulin sensitivity with higher glucose infusion rates compared to WT mice and increased glucose uptake into subcutaneous and intra-abdominal fat. In conclusion, these data provide the first evidence for an action of androgens via the AR in mesenchymal bone marrow PCs to negatively regulate fat mass and improve metabolic function.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessandro Pirosa ◽  
Karen L. Clark ◽  
Jian Tan ◽  
Shuting Yu ◽  
Yuanheng Yang ◽  
...  

Abstract Background Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. Methods We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. Results These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. Conclusions The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1335-1335
Author(s):  
Fabrizio Martelli ◽  
Giovanni Amabile ◽  
Barbara Ghinassi ◽  
Rodolfo Lorenzini ◽  
Alessandro M. Vannucchi ◽  
...  

Abstract Mast cells are hematopoietic cells localized in extramedullary sites where they engage themselves in the process of allergic response and in the immune reaction against parasites. Mast cells derive from multilineage c-KitlowCD34lowSca-1pos progenitor cells present in the marrow. These cells give rise to Linnegc-KitposSca-1neg T1/ST2pos mast cell restricted progenitor cells (MCP) whose futher maturation in the marrow remains limited under steady state conditions. MCP migrate through the blood in extramedullary sites were they mature into tissue-retricted c-KitposFceRIpos mast cells characterized by a specific mast cell protease (MMCP) profiling (dermal, mucosal and serosal mast cells in skin, gut and peritoneal cavity, respectively). The molecular mechanism that, in normal mice, restricts the mastocytopoietic potential of progenitor cells to the extramedullary sites, as well as the factors that guide the tissue-restricted differentiation of these cells, are unknown. Thrombopoietin (TPO)-Mpl interactions play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation in the marrow. Here we report that mast cells, and their precursors, express Mpl (both as mRNA and cell surface protein) (see Table). Furthermore, targeted deletion of this gene (Mplnull mutation) decrease the number of MCP (by 1-log) and increases that of mast cells in dermis (by 3-fold), peritoneal cavity (by 3-fold), bone marrow (2-log) and spleen (2-log). Furthermore, because of their higher (by 2-log) MMCP-7 expression, serosal Mplnull mast cells resemble more wild-type dermal rather than serosal mast cells. On the other hand, either treatment of mice with TPO or addition of TPO to bone marrow-derived mast cell cultures induces mast cell apoptosis (by Tunel and Annexin staining) and severely hampers mast cell differentiation (by expression profiling). These data are consistent with a regulatory mechanism for murine mastocytopoiesis according to which TPO favours the transition from multilineage progenitors to CMP but blocks differentiation of MCP to mature mast cells. We propose TPO as the growth factor that restrict mast cell differentiation to extramedullaty sites and that control the switch between serosal vs dermal mast cell differentiation. Mpl expression mRNA 2-ΔCt Protein (AFU) Cy7-A Protein (AFU) Cy7-AMM2 AFU= arbitrary fluorescence intensity. p< 0.01 with respect to Cy7-A (irrilevant antibody) Wild type Marrow B cells (B220pos) b.d. 120±4 205±4 Wild type Marrow Megakaryocytes (CD61pos/CD41pos) 5.0±0.1 × 10-2 178±3 978±74* Wild type Marrow MCP (cKitpos/T1ST2pos) 1.3±0.01 × 10-2 139±16 1658±73* Wild-type Marrow Mast Cells (cKitpos/Fcε RIpos) 1.9±0.1 × 10-2 110±1 868±71* Serosal Mast Cells (cKitpos/FcεRIpos) 7.2±2.1 × 10-4 393±1 1374±25* Mplnull Marrow Megakaryocytes (CD61pos/CD41pos) b.d. 365±28 469±50 Mplnull Marrow Mast Cells (cKitpos/FcεRIpos) b.d 107±1 109±3


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1558-1558
Author(s):  
Pavel Burda ◽  
Nikola Curik ◽  
Nina Dusilkova ◽  
Giorgio L Papadopoulos ◽  
John Strouboulis ◽  
...  

Abstract Introduction Myelodysplastic syndrome (MDS) is often manifested by anemia due to ineffective erythropoiesis. Upon transformation to MDS/AML the uniform population of leukemic blasts overgrow dysplastic bone marrow. Hematopoiesis is regulated by transcription factors GATA-1 and PU.1 that interact and mutually inhibit each other in progenitor cells to guide multilineage commitment and subsequent lineage differentiation. Expression of PU.1 is controlled by several transcription factors including PU.1 itself at distal URE enhancer. It has been well established that underexpression of PU.1 in progenitor cells leads to AML (Rosenbauer F et al. 2004). In addition, co-expression of PU.1 and GATA-1 in AML-erythroleukemia (EL) blasts prevents induction of differentiation programs regulated by these transcription factors. In our laboratory, we recently observed that MDS/AML erythroblasts display repressive histone modifications and methylation status of PU.1 gene that respond to 5-azacitidine leading to inhibited blast cell proliferation and stimulated myeloid differentiation (Curik N et al. 2012). Inhibition of transcriptional activity of PU.1 protein by GATA-1 has been reported (Nerlov C et al. 2000) however it is not known whether GATA-1 can inhibit PU.1 gene in human early erythroblasts directly. Hypothesis GATA-1 inhibits PU.1 levels directly and modulates its transcriptional outcome in early erythroblasts. We also hypothesize that GATA-1-mediated repression of PU.1 transcription is delayed and this may play a role in ineffective erythropoiesis. Material and Methods Cell lines: MDS-derived OCI-M2 EL and other two human ELs (HEL, K562) and one murine EL (MEL); all co-expressing GATA-1 and PU.1. Patients: MDS patients (N=5) with rather advanced disease; MDS/AML (4) and RAEBI (1). Four received AZA; response: PR (2), SD (2) with HI. Median OS>24 Mo. For chromatin immunoprecipitation (ChIP) analysis either cell lines or CD19/CD3-depleted bone marrow cells were used. Results Direct association of GATA-1 with PU.1 gene was demonstrated in all three human ELs using ChIP. Occupancy of GATA-1 was detected upstream the PU.1 promoter and distally at GATA-1 binding sites or at PU.1 binding sites together with PU.1. Comparable data documenting occupancy of GATA-1 at PU.1 gene were observed also in MEL cells and in normal murine fetal erythroblasts using ChIP-sequencing. To test how GATA-1 regulates PU.1 expression we overexpressed GATA-1 in erythroblasts and tested expression of PU.1, histone H3 modification (near GATA-1 occupancy) and cell growth. We found that GATA-1 inhibited PU.1 expression, facilitated enrichment of repressive modifications at PU.1 gene (H3K9Me, H3K27Me) while depleted activation modifications (H3K9Ac, H3K4Me), and also inhibited cell growth. Next, we tested effects of GATA-1 knockdown using siRNA. Indeed, inhibition of GATA-1 expression in erythroblasts leads to increase in PU.1 level as well as of its targets (CEBPA, MAC1). Using Luciferase assay we confirmed that both endogenously produced PU.1 and GATA-1 are capable to stimulate exogenously inserted reporters. Next, we compared chromatin structure of PU.1 gene between data from ELs, normal controls and high risk MDS. Our data revealed that PU.1 gene in MDS is enriched with repressive modifications (H3K9Me, H3K27Me) while depleted with activation modifications (H3K9Ac, H3K4Me) suggesting defects in dynamic regulation of PU.1 expression in MDS. Conclusion Our data from ELs provide a) evidence of GATA-1-mediated repression of PU.1 gene in erythroblasts and that b) manipulation of GATA-1 affected PU.1 level in opposite direction. In high risk MDS, the chromatin structure of PU.1 gene displays accumulation of repressive epigenetic marks that are responsive to AZA. We think that during early erythroid differentiation GATA-1 binds and represses PU.1 gene, however this is not fully completed in MDS and therefore erythroid differentiation is not efficient. Grants: P301/12/P380, P305/12/1033, NT14174-3/2013, UNCE204021, FR-TI2/509, SVV-2013-266509, PRVOUK-P24/LF1/3 Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document