Evaluation of Self-Healing Efficiency of Reinforced Concrete Beams with Calcium Nitrate Microcapsules

Author(s):  
Luis Bonilla ◽  
Marwa Hassan ◽  
Hassan Noorvand ◽  
Tyson Rupnow ◽  
Ayman Okeil

The self-healing efficiency of cementitious materials was improved by developing several strategies to provide and deliver the products (healing agents) needed for cracks to self-repair. This study evaluated the self-healing efficiency of microcapsules filled with calcium nitrate in reinforced and unreinforced concrete beams. The structural behavior and healing efficiency were evaluated by measuring and then comparing the initial stiffness, peak strength, and deformation with posthealing measurements. Furthermore, as part of this study, crack monitoring was conducted to evaluate crack healing over time. Then characterization analysis was carried out with energy dispersive X-ray spectroscopy to quantify the healing components in the cracked areas. Results showed that the air content in samples containing microcapsules was two times higher than that in the control samples. Furthermore, addition of microcapsules lowered the flexural strength of concrete beams compared with that of the control samples. A positive stiffness recovery was recorded for all groups, with and without microcapsules or steel. Control samples showed the lowest stiffness recovery; however, the use of steel with microcapsules presented a superior healing efficiency and improved stiffness recovery significantly by 38%. Results from image analysis showed that crack widths did not completely heal for the control samples, while using microcapsules allowed the cracked widths to heal more efficiently. The best observed performance was for the microcapsules–steel group, which yielded 100% healing of the cracks.

AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075018
Author(s):  
Xi Wang ◽  
Hao Qiao ◽  
Ziwei Zhang ◽  
Shiying Tang ◽  
Shengjun Liu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2021 ◽  
Author(s):  
Ricardo Hungria ◽  
Momen Mousa ◽  
Marwa Hassan ◽  
Omar Omar ◽  
Andrea Gavilanes ◽  
...  

2018 ◽  
Vol 9 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Elisa Calabrese ◽  
Pasquale Longo ◽  
Carlo Naddeo ◽  
Annaluisa Mariconda ◽  
Luigi Vertuccio ◽  
...  

PurposeThe purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.Design/methodology/approachHere, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyncatalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.FindingsThe HG2MesPhSyncomplex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.Originality/valueIn this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.


2019 ◽  
Vol 289 ◽  
pp. 01006 ◽  
Author(s):  
Alberto Negrini ◽  
Marta Roig-Flores ◽  
Eduardo J. Mezquida-Alcaraz ◽  
Liberato Ferrara ◽  
Pedro Serna

Concrete has a natural self-healing capability to seal small cracks, named autogenous healing, which is mainly produced by continuing hydration and carbonation. This capability is very limited and is activated only when in direct contact with water. High Performance Fibre-Reinforced Concrete and Engineered Cementitious Composites have been reported to heal cracks for low damage levels, due to their crack pattern with multiple cracks and high cement contents. While their superior self-healing behaviour compared to traditional concrete types is frequently assumed, this study aims to have a direct comparison to move a step forward in durability quantification. Reinforced concrete beams made of traditional, high-performance and ultra-high-performance fibre-reinforced concretes were prepared, sized 150×100×750 mm3. These beams were pre-cracked in flexion up to fixed strain levels in the tensioned zone to allow the analysis of the effect of the different cracking patterns on the self-healing capability. Afterwards, water permeability tests were performed before and after healing under water immersion. A modification of the water permeability test was also explored using chlorides to evaluate the potential protection of this healing in chloride-rich environments. The results show the superior durability and self-healing performance of UHPFRC elements.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 543
Author(s):  
Dong-Min Kim ◽  
Junseo Lee ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
Kyeong-Nam Nam ◽  
...  

Although self-healing protective coatings have been widely studied, systematic research on healing performance of the coating according to damage width has been rare. In addition, there has been rare reports of self-healing of the protective coating having damage width wider than 100 µm. In this study, self-healing performance of a microcapsule type self-healing protective coating on cement mortar was studied for the coating with damage width of 100–300 µm. The effect of capsule-loading (20 wt%, 30 wt% and 40 wt%), capsule size (65-, 102- and 135-µm-mean diameter) and coating thickness (50-, 80- and 100-µm-thick undercoating) on healing efficiency was investigated by water sorptivity test. Accelerated carbonation test, chloride ion penetration test and scanning electron microscope (SEM) study were conducted for the self-healing coating with a 300-µm-wide damage. Healing efficiency of the self-healing coating decreased with increasing damage width. As capsule-loading, capsule size or coating thickness increased, healing efficiency of the self-healing coating increased. Healing efficiency of 76% or higher was achieved using the self-healing coating with a 300-µm-wide scratch. The self-healing coating with a 200-µm-wide crack showed healing efficiency of 70% or higher. The self-healing coating having a 300-µm-wide scratch showed effective protection of the substrate mortar from carbonation and chloride ion penetration, which was supported by SEM study.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Ali Berkem ◽  
Ahmet Capoglu ◽  
Turgut Nugay ◽  
Erol Sancaktar ◽  
Ilke Anac

The self-healing ability can be imparted to the polymers by different mechanisms. In this study, self-healing polydimethylsiloxane-graft-polyurethane (PDMS-g-PUR)/Vanadium pentoxide (V2O5) nanofiber supramolecular polymer composites based on a reversible hydrogen bonding mechanism are prepared. V2O5 nanofibers are synthesized via colloidal route and characterized by XRD, SEM, EDX, and TEM techniques. In order to prepare PDMS-g-PUR, linear aliphatic PUR having one –COOH functional group (PUR-COOH) is synthesized and grafted onto aminopropyl functionalized PDMS by EDC/HCl coupling reaction. PUR-COOH and PDMS-g-PUR are characterized by 1H NMR, FTIR. PDMS-g-PUR/V2O5 nanofiber composites are prepared and characterized by DSC/TGA, FTIR, and tensile tests. The self-healing ability of PDMS-graft-PUR and composites are determined by mechanical tests and optical microscope. Tensile strength data obtained from mechanical tests show that healing efficiencies of PDMS-g-PUR increase with healing time and reach 85.4 ± 1.2 % after waiting 120 min at 50 °C. The addition of V2O5 nanofibers enhances the mechanical properties and healing efficiency of the PDMS-g-PUR. An increase of healing efficiency and max tensile strength from 85.4 ± 1.2% to 95.3 ± 0.4% and 113.08 ± 5.24 kPa to 1443.40 ± 8.96 kPa is observed after the addition of 10 wt % V2O5 nanofiber into the polymer.


Sign in / Sign up

Export Citation Format

Share Document