Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics

2019 ◽  
Vol 45 (17) ◽  
pp. 21270-21277 ◽  
Author(s):  
Shalini Rajpoot ◽  
Rohit Malik ◽  
Young-Wook Kim
2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


2013 ◽  
Vol 357-360 ◽  
pp. 1082-1085 ◽  
Author(s):  
Kamarul Aini Mohd Sari ◽  
Sohif Mat ◽  
Khairiah Haji Badri ◽  
Muhammad Fauzi Mohd Zain

An experimental program was performed to obtain the density, compressive strength, and thermal conductivity of palm-based lightweight concrete. Palm-based polyurethane (PU) particles were used as lightweight aggregates in creating concrete systems. Concrete systems contain palm kernel oil-based polyol (PKO-p) reacted with 2,4-methylene diphenyl diisocyanate (MDI). In this study, polymer concrete was improved to achieve the optimum level of PU with the lowest possible density. The PU particles in the concrete mixture comprised of 1% to 5% w/w with density of less than 1800 kg/m3. The PU particles were 5 mm in size. The ratio of PKO-p to MDI was set at 1:1 and the loading of the concrete mixture was set at 3% w/w to produce lightweight concrete. The resulting concrete has excellent compressive strength (17.5 MPa) and thermal conductivity (0.24 W/mK). Results show that the PU particle dosage has the most significant effect on the physical and mechanical properties of concrete.


2019 ◽  
Vol 25 (4) ◽  
pp. 43-49
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
ANA CASANDRA SEBE

The paper presents an aluminum foam experimental technique using the microwave energy. The raw material was recycling aluminum waste processed by ecological melting and gas atomizing to obtain the fine powder required in the foaming process. The powder mixture was completed with dolomite as a foaming agent. The products had a fine and homogeneous porous structure (pore size between 0.4-0.9 mm). The density (1.17-1.19 g/cm3), the compressive strength (6.83-7.01 MPa) and the thermal conductivity (5.71-5.84 W/m·K) had values almost similar to the foams made by conventional methods.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1816 ◽  
Author(s):  
Marcin Borowicz ◽  
Joanna Paciorek-Sadowska ◽  
Jacek Lubczak ◽  
Bogusław Czupryński

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.


2017 ◽  
Vol 908 ◽  
pp. 118-122 ◽  
Author(s):  
Giedrius Balčiūnas ◽  
Viktor Kizinievič ◽  
Justinas Gargasas

Scientific literature mostly aims at investigation of composites with fibre hemp shives (FHS) aggregate and lime binder, although, such materials are characterised by pretty low mechanical properties. In order to obtain higher mechanical properties of a composite, it is appropriate to use cementitious binder. This work investigates physical properties of blocks from hemp shives aggregate and cementitious binder, manufactured in the expanded clay production line using vibro pressing technology. Following properties of the blocks are determined: freeze-thaw resistance, compressive strength, thermal conductivity and density. Thermal resistance according to EN ISO 6946 for the block with cavities is calculated as well. It is found that compressive strength of FHS-cement blocks may be up to 3.18 MPa when the density is of ~850 kg/m3 and thermal conductivity up to 0.135 W/(m∙K). It is found as well that the decrease of compressive strength is 8.7% after 25 freeze-thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document