Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms

Chemosphere ◽  
2006 ◽  
Vol 62 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Anette Haiß ◽  
Klaus Kümmerer
1913 ◽  
Vol 108 (5) ◽  
pp. 115-115
Author(s):  
Alfred Gradenwitz
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 21 (11) ◽  
pp. 5673-5680
Author(s):  
Muthukrishnan Francklin Philips ◽  
Jothirathinam Thangarathinam ◽  
Jayakumar Princy ◽  
Cyril Arockiaraj Crispin Tina ◽  
Cyril Arockiaraj Crispin Tina ◽  
...  

The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V2O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V2O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V2O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V2O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V2O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V2O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V2O5@Se NPs/MWCNTs.


2007 ◽  
Vol 63 (2) ◽  
pp. 201-204 ◽  
Author(s):  
Helmut Ehrenberg ◽  
Hartmut Fuess ◽  
Sabine Hesse ◽  
Jörg Zimmermann ◽  
Heinz von Seggern ◽  
...  

CsEuBr3, caesium europium tribromide, crystallizes in an orthorhombic perovskite-type structure with an a − a − c + octahedral tilting scheme (GdFeO3 type). CsEuBr3 is unstable in air and one of the degradation products was identified as Cs2EuBr5·10H2O by single-crystal X-ray analysis and synchrotron powder diffraction. The Eu3+ ions on twofold rotational axes are coordinated by nine water molecules, and each water O atom is linked to two Br atoms by hydrogen bonds. The tricapped trigonal [EuO9] prisms are separated from each other by infinite {Cs2Br5·H2O} chains; the description Eu(OH2)9Cs2Br5(OH2) might therefore be more appropriate. The oxidation of Eu2+ to Eu3+ during the degradation of CsEuBr3 is further confirmed by changes in the magnetic properties from the as-prepared material into the degraded product.


Author(s):  
Agnes Serbanescu ◽  
Mona Barbu ◽  
Ionut Cristea ◽  
Gina Catrina ◽  
Georgiana Cernica ◽  
...  

A good function of waste-to-energy installation requires knowledge of the combustion characteristics of the fuel and fusion characteristics of the ash produced in the combustion process. Sewage sludge could be considered as renewable fuel due the high quantity of organics of sufficiently high calorific value. The combustion of sewage sludge can cause operating problems due to high ash content containing mineral compounds. This paper presents the oxide composition of three kinds of sewage sludge ashes and the influence on the slagging and fouling process in combustion. For comparation, two coal samples were selected, a low and a high rank coal. The mineral matter were investigated by the X-ray fluorescence analytical technique using the Rigaku CG X-ray Spectrofluorimeter. The evaluation of slagging and fouling process was performed on the basis of some indices: the basic oxides, the base-to-acid ratio, the slagging index and the fouling index. The conclusion based on experimental studies is that depending on mineral content the sewage sludge ash can cause high to moderate slagging and fouling hazard.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
P. G. Rouxhet ◽  
N. Mozes

The thermodynamic approach of adhesion and DLVO theory are complementary to predict initial bacterial adhesion; the interplay between short- and long-range forces, respectively, may be due to surface roughness. Due to the influence of electrical double layer interactions, adhesion can be promoted by treatments leading to modification of the cell or support surface properties. Adhesion is influenced by cell-cell interactions, by the cpresence of polymer molecules on the surface and by the composition of the medium. X-ray photoelectron spectroscopy can be applied to determine the elemental composition of the surface of microorganisms; some information on the chemical functions can also be obtained. The surface composition is related to physico-chemical properties which play a determining role in adhesion and flocculation, in particular the hydrophobicity and the zeta potential.


Heritage ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1109-1123
Author(s):  
Elena Marrocchino ◽  
Chiara Telloli ◽  
Martina Pedrini ◽  
Carmela Vaccaro

Ancient buildings are important components of the Italian Cultural Heritage and, since the Etruscan Period, Bologna (north-eastern Italy) has always been one of the most flourishing cities both culturally and economically in the Italian and European panorama. The Orsi-Marconi Palace in Bologna presents a monumental façade decorated with many sandstone ornaments of the 16th century. Different samples from different parts of the façade of the building were collected and firstly characterised by macroscopic observations to determine the structural aspect. A petro-mineralogical study on the surfaces of the samples was conducted using a stereomicroscope and Optical Transmitted Light Polarized Microscopy. In addition, X-Ray Fluorescence and X-Ray Powder Diffractometer analyses were carried out to better understand the mineralogical composition of the sandstone materials used and the degradation products from the façades of this historical building. The aim of this work was to better understand how to revalue the sandstone decorations severely affected by deterioration phenomena.


2011 ◽  
Vol 10 (3) ◽  
pp. 221-229 ◽  
Author(s):  
J.M. Kotler ◽  
R.C. Quinn ◽  
B.H. Foing ◽  
Z. Martins ◽  
P. Ehrenfreund

AbstractPhyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth–Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illite–smectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at ∼17 Å. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier–Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships between mineralogy and microbiology for planetary missions.


1991 ◽  
Vol 24 (3-4) ◽  
pp. 431-436 ◽  
Author(s):  
H. V. Hendriksen ◽  
S. Larsen ◽  
B. K. Ahring

The anaerobic degradation of pentachlorophenol (PCP) and phenol was examined in two lab-scale fixed-film reactors. Anaerobic digested sewage sludge from a municipal treatment plant was used as inoculum. The reactors were fed a mineral medium containing PCP (1-2 mg/l) and phenol (4-6 mg/l). In addition one of the reactors received 1 g/l glucose as an easily degradable carbon source. After 6 months of continuous operation, the removal of PCP in the reactor with no glucose added was approximately 60%, whereas the removal in the reactor with glucose reached 98%. Tetrachlorophenol (TeCP) and trichloro-phenol (TCP) were found as degradation products and the removal of these compounds was also significantly enhanced by the presence of glucose. Phenol degradation was approximately 70% with glucose added and 95% without glucose.


2015 ◽  
Vol 30 (S1) ◽  
pp. S31-S35 ◽  
Author(s):  
B. Peplinski ◽  
C. Adam ◽  
B. Adamczyk ◽  
R. Müller ◽  
M. Michaelis ◽  
...  

For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on ‘as received’ SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators.


Sign in / Sign up

Export Citation Format

Share Document