Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan

Chemosphere ◽  
2010 ◽  
Vol 78 (11) ◽  
pp. 1368-1377 ◽  
Author(s):  
Maria Grazia Perrone ◽  
Maurizio Gualtieri ◽  
Luca Ferrero ◽  
Claudia Lo Porto ◽  
Roberto Udisti ◽  
...  
Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 777 ◽  
Author(s):  
Javad Sharifi-Rad ◽  
Farzad Kobarfard ◽  
Athar Ata ◽  
Seyed Abdulmajid Ayatollahi ◽  
Nafiseh Khosravi-Dehaghi ◽  
...  

Members of the Prosopis genus are native to America, Africa and Asia, and have long been used in traditional medicine. The Prosopis species most commonly used for medicinal purposes are P. africana, P. alba, P. cineraria, P. farcta, P. glandulosa, P. juliflora, P. nigra, P. ruscifolia and P. spicigera, which are highly effective in asthma, birth/postpartum pains, callouses, conjunctivitis, diabetes, diarrhea, expectorant, fever, flu, lactation, liver infection, malaria, otitis, pains, pediculosis, rheumatism, scabies, skin inflammations, spasm, stomach ache, bladder and pancreas stone removal. Flour, syrup, and beverages from Prosopis pods have also been potentially used for foods and food supplement formulation in many regions of the world. In addition, various in vitro and in vivo studies have revealed interesting antiplasmodial, antipyretic, anti-inflammatory, antimicrobial, anticancer, antidiabetic and wound healing effects. The phytochemical composition of Prosopis plants, namely their content of C-glycosyl flavones (such as schaftoside, isoschaftoside, vicenin II, vitexin and isovitexin) has been increasingly correlated with the observed biological effects. Thus, given the literature reports, Prosopis plants have positive impact on the human diet and general health. In this sense, the present review provides an in-depth overview of the literature data regarding Prosopis plants’ chemical composition, pharmacological and food applications, covering from pre-clinical data to upcoming clinical studies.


2012 ◽  
Vol 18 (4-2) ◽  
pp. 635-641 ◽  
Author(s):  
Paride Mantecca ◽  
Maurizio Gualtieri ◽  
Eleonora Longhin ◽  
Giuseppina Bestetti ◽  
Paola Palestini ◽  
...  

The results presented summarise the ones obtained in the coordinated research project Tosca, which extensively analysed the impact of Milan urban PM on human health. The molecular markers of exposure and effects of seasonally and size-fractionated PMs (summer and winter PM10, PM2.5) were investigated in in vitro (human lung cell lines) and in vivo (mice) systems. The results obtained by the analyses of cytotoxic, pro-inflammatory and genotoxic parameters demonstrate that the biological responses are strongly dependent upon the PM samples seasonal and dimensional variability, that ultimately reflect their chemical composition and source. In fact summer PM10, enriched in crustal elements and endotoxins, was the most cytotoxic and pro-inflammatory fraction, while fine winter PMs induced genotoxic effects and xenobiotic metabolizing enzymes (like CYP1B1) production, likely as a consequence of the higher content in combustion derived particles reach in PAHs and heavy toxic metals. These outcomes outline the need of a detailed knowledge of the PMs physico-chemical composition on a local scale, coupled with the biological hazard directly associated to PM exposure. Apparently this is the only way allowing scientists and police-makers to establish the proper relationships between the respirable PM quantity/quality and the health outcomes described by clinicians and epidemiologists.


2020 ◽  
Vol 16 ◽  
Author(s):  
Amina Bouaroura ◽  
Narimane Segueni ◽  
Ramazan Erenler ◽  
Abdghani May ◽  
Chawki Bensouici ◽  
...  

Background:: Algerian propolis has gained interest in the last recent years. Many researches concerning both its biological effects and chemical composition were performed. Objective:: The present study was designed to investigate the chemical composition in particular phenolic compounds and the antioxidant activity of five Algerian propolis collected from different geographical parts of Algerian north namely: Constantine (CN), Boumerdes (BN), Mila (MN), Tebessa (TN) and Guelma (GN). Method:: Propolis extracts were obtained using solvents of varying polarity: petroleum ether, chloroform, ethyl acetate and finally methanol. Phenolic compounds were determined by liquid chromatography-tandem mass spectrometry (LCMS/ MS). In addition, total flavonoid and phenolic contents were also determined. Antioxidant activity was investigated using five complementary tests namely: DPPH., ABTS.+ assays for radical-scavenging activity, β-carotene-linoleic acid assay for lipid peroxidation activity, CUPRAC and FRAP assays for reduction capacity. Results:: The main phenolic compounds detected in the present study were: caffeic, p-coumaric, cinnamic and chlorogenic acids as well as naringenin and kampferol. Among the tested extracts, ethyl acetate and methanol extracts exhibited the highest phenolic and flavonoid contents and the strongest antioxidant activity. Propolis of Constantine was the most active one. Conclusion:: Our results suggest a potential use of Algerian propolis as a natural source of bioactive compounds with antioxidant activity.


Author(s):  
Elvis Jolinom Mbot ◽  
Cédric Sima Obiang ◽  
Maximilienne Ascenssion Nyegue ◽  
Bill Raphaël Bikanga ◽  
Huguette Agnaniet ◽  
...  

Aims: The objective of this work is to determine the chemical composition and in vitro evaluation of the antibacterial activities of essential oils of four species of aromatic plants of Gabonese origin obtained by hydrodistillation. Methods: All the samples were examined by chromatographic analyzes and by GC / MS coupling. Antimicrobial activity was assessed by diffusion and microdilution methods. Results: The most common compounds found in essential oils were terpene hydrocarbons and oxygenates. The major constituents are β-phellandrene (56.3%), β-pinene (11%) and myrcene (10.4%). The three bacterial strains used are sensitive to essential oils. However, some essential oils stood out with greater spectra of action compared to others, such as Maranthes gabunensis and Mammea africana which showed activity against all strains. The inhibition parameters (MIC and CMB) are between 0.78 and 25 mg / mL. Some oils have shown bacteriostatic and / or bactericidal activity on the targeted strains. Conclusion: The essential oils studied present a diversity of chemical compositions and good antibacterial activities.


2014 ◽  
Vol 29 (5) ◽  
pp. 699-714 ◽  
Author(s):  
Agnieszka Śmieszek ◽  
Anna Donesz-Sikorska ◽  
Jakub Grzesiak ◽  
Justyna Krzak ◽  
Krzysztof Marycz

The objective of this study was to determine biocompatibility of zirconia-based coatings obtained by the sol–gel method. Two matrices, ZrO2 and SiO2/ZrO2, were created and applied on stainless steel type 316L with dip-coating technique. The morphology and topography of biomaterials’ surface were characterized using energy-dispersive X-ray spectroscopy and atomic force microscopy, while chemical composition was analyzed by Raman spectroscopy. Additionally, wettability and surface free energy were characterized. Biocompatibility of obtained biomaterials was evaluated using an in vitro model employing mesenchymal stem cells (MSCs) of adipose and bone marrow origin. Biological analysis included determination of proliferation activity and morphology of MSCs in cultures on synthesized biomaterials. Osteoinductive properties of biomaterials were determined both in non-osteogenic, as well as osteogenic conditions. The results showed that investigated biomaterials exerted different impact on MSCs. Biomaterial with ZrO2 layer was more biocompatible for adipose-derived MSCs, while SiO2/ZrO2 layer promoted proliferation of bone marrow derived MSCs. Moreover, hybrid coating exhibited greater osteoinductive properties than ZrO2 coating, both on cultures with adipose-derived stromal (stem) cells and bone marrow stromal cells. Observed biological effects may result not only from different chemical composition, but also from diverse wettability. The ZrO2 coating was characterized as hydrophobic layer, while SiO2/ZrO2 exhibited hydrophilic properties. The results obtained suggest that behavior of MSCs in response to the biomaterial may vary depending on their origin, therefore we postulate, that screening analysis of implants’ biocompatibility, should incorporate model applying both adipose- and bone marrow derived MSCs.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Adelina Jiménez-Arellanes ◽  
Jorge Cornejo-Garrido ◽  
Gabriela Rojas-Bribiesca ◽  
María del Pilar Nicasio-Torres ◽  
Salvador Said-Fernández ◽  
...  

Rubus liebmanniiis an endemic species from Mexico used in traditional medicine primarily to treat dysentery and cough. Thein vitroactivity againstGiardia lambliaandEntamoeba histolyticathat produces the ethanolic extract of the aerial parts of the plant led us to expand the pharmacological and phytochemical research of this species. Gastrointestinal disorders including amebiasis remain one of the health problems that need to be addressed and it is of interest to find alternatives that improve their treatment. Also, it is important to emphasize thatR. liebmanniigrows wild in the country and is not found in abundance; therefore, alternatives that avoid overexploitation of the natural resource are mandatory. Ongoing with the evaluation of the potentialities thatR. liebmanniipossesses for treating infectious gastrointestinal diseases, the aim of the present study was to evaluate the biological effects and the chemical composition of the micropropagated plant.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Sign in / Sign up

Export Citation Format

Share Document