Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives

Chemosphere ◽  
2021 ◽  
pp. 133464
Author(s):  
Dawei Lan ◽  
Huiwen Zhu ◽  
Jianwen Zhang ◽  
Shuai Li ◽  
Quhan Chen ◽  
...  
Author(s):  
Agnieszka Kołodziejczak-Radzimska ◽  
Long D. Nghiem ◽  
Teofil Jesionowski

Abstract Purpose of Review Untreated wastewater discharge can significantly and negatively impact the state of the environment. Rapid industrialization and economic development have directly contributed to land and water pollution resulting from the application of many chemicals such as organic dyes, pharmaceuticals, and industrial reagents. The removal of these chemicals before effluent discharge is crucial for environmental protection. This review aims to explore the importance of functionalized materials in the preparation of biocatalytic systems and consider their application in eliminating water pollutants. Recent Findings Wastewater treatment methods can be classified into three groups: (i) chemical (e.g., chemical oxidation and ozonation), (ii) physical (e.g., membrane separation and ion exchange), and (iii) biological processes. Biological treatment is the most widely used method due to its cost-effectiveness and eco-friendliness. In particular, the use of immobilized enzymes has recently become more attractive as a result of scientific progress in advanced material synthesis. The selection of an appropriate support plays an important role in the preparation of such biologically active systems. Recent studies have demonstrated the use of various materials for enzyme immobilization in the purification of water. Summary This review identifies and discusses different biocatalytic systems used in the enzymatic degradation of various water pollutants. Materials functionalized by specific groups can serve as good support matrices for enzyme immobilization, providing chemical and thermal stability to support catalytic reactions. Enzymatic biocatalysis converts the pollutants into simpler products, which are usually less toxic than their parents. Due to immobilization, the enzyme can be used over multiple cycles to reduce the cost of wastewater treatment. Future studies in this field should focus on developing new platforms for enzyme immobilization in order to improve degradation efficiency.


2020 ◽  
Author(s):  
Francisco Jose Alguacil ◽  
Felix A. Lopez

The problem of the treatment of contaminated wastewaters is of the upmost worldwide interest. This contamination occurs via the presence of inorganic or organic contaminants of different nature in relation with the industry they come from. In the case of organic dyes, their environmental impact, and thus, their toxicity come from the air (releasing of dust and particulate matter), solid (scrap of textile fabrics, sludges), though the great pollution, caused from dyes, comes from the discharge of untreated effluents into waters, contributing to increase the level of BOD and COD in these liquid streams; this discharge is normally accompanied by water coloration, which low the water quality, and caused a secondary issue in the wastewater treatment. Among separation technologies, adsorption processing is one of the most popular, due to its versatility, easiness of work, and possibility of scaling-up in the eve of the treatment of large wastewater volumes. Within a miriade of potential adsorbents for the removal of organic dyes, this work presented the most recent advances in the topic.


Chemosphere ◽  
2021 ◽  
pp. 132760
Author(s):  
Nazia Hossain ◽  
Sabzoi Nizamuddin ◽  
Periasamy Selvakannan ◽  
Gregory Griffin ◽  
Srinivasan Madapusi ◽  
...  

2020 ◽  
Vol 32 (9) ◽  
pp. 2381-2388
Author(s):  
LAM VAN TAN ◽  
HONG THAM NGUYEN THI ◽  
TO UYEN DAO THI ◽  
VAN THUAN TRAN

The use of inorganic layer compounds as adsorbents for organic dyes in water treatment is of increasing interest. In this study, an attempt is made for the synthesis of Mg/Al LDHs by the hydrothermal method. The synthesis temperature was found to significantly affect to the structure of layered double hydroxides (LDHs), as pointed out by FT-IR analysis. In addition, an adsorption capacity of the synthesized LDHs against Congo red in aqueous solutions was investigated and also compared the adsorption results with other dyes such as methylene blue and methyl orange.


2021 ◽  
Vol 234 ◽  
pp. 00058
Author(s):  
Sanaa El Aggadi ◽  
Ghizlan Kaichouh ◽  
Zoubida El Abbassi ◽  
Mohammed Fekhaoui ◽  
Abderrahim EL Hourch

Tеxtile wastewater contains a variety of contaminants that are known to be hazardous. Synthetic dyes are one of the hazardous pollutants in the textile industry that are resistant to the photo/bio dеgradation. They cannot be dеstroyed under conventional wastewater treatment. This document presents a review on the electrochemical treatment of wastеwater containing synthetic organic dyes by anodic oxidation for environmental protection. The mechanisms of еlectrochemical oxidation in anodic oxidation processes are well explained. A largе number of electrodes have been tested by this method. Therefore, this papеr aims to summarize and discuss the most important and rеcent results available in the literature on anode application for the rеmoval of synthetic dyestuffs. Finally, the prospects of the process for futurе research are suggested.


2021 ◽  
Vol 10 (1) ◽  
pp. 139-148
Author(s):  
Rika Favoria Gusa ◽  
Diana Novita Sari ◽  
Fitri Afriani ◽  
Wahri Sunanda ◽  
Yuant Tiandho

During the production of batik cual, thick-colored wastewater is produced. Unfortunately, the wastewater could damage the environment if it is disposed of without specific processing. The Fenton method is an advanced oxidation process (AOPs) that can degrade organic dyes found in liquid waste. In this research, the researchers studied the Fenton mechanism's application to the batik cual wastewater treatment. The Fenton's reagent used was H2O2 with FeSO4.7H2O. Some of the experimental wastewater treatment parameters were the values of biological oxygen demand (BOD), chemical oxygen demand (COD), the degradation efficiency of difficult to decompose organic materials, and the color degradation efficiency in batik cual wastewater. The results show that the Fenton mechanism’s efficiency of removing color from batik cual wastewater is up to 97.8%, COD and BOD removal efficiencies are 76.3% and 75.2%, and the degradation efficiency of difficult to decompose organic matter is 76.8%. Also, the researchers found that the higher amounts of FeSO4.7H2O increase the removal parameters effectiveness. Therefore, the Fenton mechanism can effectively improve the quality of wastewater in batik cual production.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3241
Author(s):  
Manal N. Abdel Azeem ◽  
Safwat Hassaballa ◽  
Osama M. Ahmed ◽  
Khaled N. M. Elsayed ◽  
Mohamed Shaban

More suitable wastewater treatment schemes need to be developed to get rid of harmful dyes and pigments before they are discharged, primarily from apparel and textile factories, into water bodies. Silver nanoparticles (Ag-NPs) are very effective, reductive nanocatalysts that can degrade many organic dyes. In this study, Ag-NPs are stabilized and capped with bioactive compounds such as Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa from marine macroalgae extracts to produce Ag[GE], Ag[TE], and Ag[EE] NPs. The reduction of Ag ions and the production of Ag[GE], Ag[TE], and Ag[EE] NPs have been substantiated by UV–Vis spectroscopy, SEM, EDX, and XRD tests. The NPs are sphere and crystalline shaped in nature with dimensions ranging from 20 to 25 nm. The biosynthesized Ag[GE], Ag[TE], Ag[EE] NPs were applied to photodegrade hazardous pigments such as methylene blue, Congo red, safranine O, and crystal violet under sunlight irradiation. In addition to the stability analysis, various experimental parameters, including dye concentration, exposure period, photocatalyst dose, and temperature, were optimized to achieve 100% photodegradation of the dyes. Moreover, the thermodynamic and kinetic parameters were calculated and the impact of scavengers on the photocatalytic mechanism was also investigated.


2021 ◽  
Vol 895 (1) ◽  
pp. 012043
Author(s):  
A V Zaitsev ◽  
K S Makarevich ◽  
O I Kaminsky

Abstract The paper shows the possibility of application of photocatalytic water treatment method as applied to model effluents of car repair plants containing ethylene glycol. The influence of functional components of automobile coolants on total efficiency of photooxidation was considered. It has been revealed that the presence of organic dyes in automobile coolants with absorption areas coinciding with the absorption areas of photocatalysts reduces the overall efficiency of photooxidation processes.


Sign in / Sign up

Export Citation Format

Share Document