Potential applications of passive sampling for monitoring non-polar industrial pollutants in the aqueous environment in support of REACH

2009 ◽  
Vol 1216 (3) ◽  
pp. 631-639 ◽  
Author(s):  
Richard Greenwood ◽  
Graham A. Mills ◽  
Branislav Vrana
2001 ◽  
Vol 1 ◽  
pp. 557-575 ◽  
Author(s):  
Wendy A. Ockenden ◽  
Foday M. Jaward ◽  
Kevin C. Jones

There are numerous potential applications for validated passive sampling techniques to measure persistent organic pollutants (POPs) in the atmosphere, but such techniques are still in their infancy. Potential uses include: monitoring to check for regulatory compliance and identification of potential sources; cheap/efficient reconnaissance surveying of the spatial distribution of POPs; and deployment in studies to investigate environmental processes affecting POP cycling. This article reviews and discusses the principles and needs of passive sampling methodologies. The timescales required for analytical purposes and for the scientific objectives of the study are critical in the choice and design of a passive sampler. Some techniques may operate over the timescales of hours/days, others over weeks/months/years. We distinguish between approaches based on "kinetic uptake" and "equilibrium partitioning". We highlight potentially useful techniques and discuss their potential advantages, disadvantages, and research requirements, drawing attention to the urgent need for detailed studies of sampler performance and calibration.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 770 ◽  
Author(s):  
Shengnan Yang ◽  
Qian Chen ◽  
Mengyao Shi ◽  
Qiangqiang Zhang ◽  
Suke Lan ◽  
...  

Today, graphene nanomaterials are produced on a large-scale and applied in various areas. The toxicity and hazards of graphene materials have aroused great concerns, in which the detection and quantification of graphene are essential for environmental risk evaluations. In this study, we developed a fast identification and quantification method for graphene oxide (GO) in aqueous environments using Raman spectroscopy. GO was chemically reduced by hydrazine hydrate to form partially reduced GO (PRGO), where the fluorescence from GO was largely reduced, and the Raman signals (G band and D band) were dominating. According to the Raman characteristics, GO was easily be distinguished from other carbon nanomaterials in aqueous environments, such as carbon nanotubes, fullerene and carbon nanoparticles. The GO concentration was quantified in the range of 0.001–0.6 mg/mL with good linearity. Using our technique, we did not find any GO in local water samples. The transport of GO dispersion in quartz sands was successfully quantified. Our results indicated that GO was conveniently quantified by Raman spectroscopy after partial reduction. The potential applications of our technique in the environmental risk evaluations of graphene materials are discussed further.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael J. Booth ◽  
Idil Cazimoglu ◽  
Hagan Bayley

AbstractSynthetic tissues built from communicating aqueous droplets offer potential applications in biotechnology, however, controlled release of their contents has not been achieved. Here we construct two-droplet synthetic tissue modules that function in an aqueous environment. One droplet contains a cell-free protein synthesis system and a prodrug-activating enzyme and the other a small-molecule prodrug analog. When a Zn2+-sensitive protein pore is made in the first droplet, it allows the prodrug to migrate from the second droplet and become activated by the enzyme. With Zn2+ in the external medium, the activated molecule is retained in the module until it is released on-demand by a divalent cation chelator. The module is constructed in such a manner that one or more, potentially with different properties, might be incorporated into extended synthetic tissues, including patterned materials generated by 3D-printing. Such modules will thereby increase the sophistication of synthetic tissues for applications including controlled multidrug delivery.


2012 ◽  
Vol 1487 ◽  
Author(s):  
A. Rascón-Chu ◽  
A. L. Martínez-López ◽  
C. Berlanga-Reyes ◽  
E. Carvajal-Millan ◽  
A. C. Campa-Mada ◽  
...  

ABSTRACTArabinoxylans are polysaccharides constituted of a linear backbone of xylose in which arabinose substituents are attached, some ferulic acid esterifies arabinose. Arabinoxylan can form covalent gels by oxidative coupling of ferulic acid. Arabinoxylan gels could have potential applications for colon-specific biomolecules delivery due to their macroporous structure, and their aqueous environment and their dietary fiber nature. Lycopene has received increasing attention for its possible role in the prevention of colon cancer. It has been previously reported that arabinoxylan gels could be formed in presence of lycopene with no detriment on the lycopene antioxidant activity. The objective of this research was to investigate the in vitro degradation of arabinoxylan gels (AX gels) by two human colon bacterial species (Bacteroides ovatus and Bifidobacterium longum). Bacterial counts (CFU ml-1) and metabolic heat production (p) followed a similar pattern with a high response during the first 24 h at 37 °C. A regression model related CFU ml-1 and p (r2= 0.98). These results show that AX gels could be carriers for lycopene delivery in colon due structure degradation by gut microbiota.


2007 ◽  
Vol 7 (2) ◽  
pp. 458-462 ◽  
Author(s):  
Yuanyuan Jia ◽  
Alfred Kleinhammes ◽  
Harsha Kulkarni ◽  
Kristopher McGuire ◽  
L. E. McNeil ◽  
...  

It is shown that 1,4-benzenediol (hydroquinone) and TiO2 nanotubes can form a hybrid structure that is stable in aqueous environment. The incorporation of hydroquinone restores the local structure of nanotubes to anatase-like as evidenced by Raman spectroscopy. Subtle overall structural changes take place upon annealing of the hybrid structure contributing to its stability. The hybrid system shows a broad optical absorption peak extending significantly beyond 700 nm with potential applications in photocatalysis and photoelectrochemistry.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Jean-Paul Revel

In the last 50+ years the electron microscope and allied instruments have led the way as means to acquire spatially resolved information about very small objects. For the material scientist and the biologist both, imaging using the information derived from the interaction of electrons with the objects of their concern, has had limitations. Material scientists have been handicapped by the fact that their samples are often too thick for penetration without using million volt instruments. Biologists have been handicapped both by the problem of contrast since most biological objects are composed of elements of low Z, and also by the requirement that sample be placed in high vacuum. Cells consist of 90% water, so elaborate precautions have to be taken to remove the water without losing the structure altogether. We are now poised to make another leap forwards because of the development of scanned probe microscopies, particularly the Atomic Force Microscope (AFM). The scanning probe instruments permit resolutions that electron microscopists still work very hard to achieve, if they have reached it yet. Probably the most interesting feature of the AFM technology, for the biologist in any case, is that it has opened the dream of high resolution in an aqueous environment. There are few restrictions on where the instrument can be used. AFMs can be made to work in high vacuum, allowing the material scientist to avoid contamination. The biologist can be made happy as well. The tips used for detection are made of silicon nitride,(Si3N4), and are essentially unaffected by exposure to physiological saline (about which more below). So here is an instrument which can look at living whole cells and at atoms as well.


Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


Sign in / Sign up

Export Citation Format

Share Document