Selective decorating Ag and MnOx nanoparticles on halloysite and used as micromotor for bacterial killing

2022 ◽  
Vol 216 ◽  
pp. 106352
Author(s):  
Jian Wang ◽  
Shengyu Wu ◽  
Wenjing Zhang ◽  
Hongchao Wang ◽  
Peiping Zhang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Nano Select ◽  
2021 ◽  
Author(s):  
Jennifer Samphire ◽  
Yuiko Takebayashi ◽  
Stephen A. Hill ◽  
Nicholas Hill ◽  
Kate J. Heesom ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 414.2-415
Author(s):  
X. Huang ◽  
T. W. Li ◽  
J. Chen ◽  
Z. Huang ◽  
S. Chen ◽  
...  

Background:Ankylosing spondylitis (AS) is a type of common, chronic inflammatory disease that compromises the axial skeleton and sacroiliac joints, causing inflammatory low back pain and progressive spinal stiffness, over time some patients develop spinal immobility and ankylosis which can lead to a decrease in quality of life. The last few decades, evidence has clearly indicated that neutrophil also plays key roles in the progression of AS. However, the immunomodulatory roles and mechanisms of neutrophils in AS are poorly understood. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) has been reported as an important regulatory molecule, expressed and regulated on different innate immune cells, plays a pivotal role in several autoimmunity diseases. Recent study indicates that Tim3 is also expressed on neutrophils. However, the frequency and roles of Tim3-expressing neutrophils in AS was not clear.Objectives:In this study, we investigated the expression of Tim3 on neutrophils in AS patients and explored the correlation between the level of Tim3-expressing neutrophils and the disease activity and severity of AS.Methods:Patients with AS were recruited from Guangdong Second Provincial General Hospital (n=62). Age/sex-matched volunteers as Healthy controls (HC) (n=39). The medical history, clinical manifestations, physical examination, laboratory measurements were recorded. The expression of costimulatory molecules including programmed death 1 (PD-1), Tim-3 on neutrophils were determined by flow cytometry. The mRNA expression of PD-1 and Tim-3 was determined by real-time PCR. The levels of Tim3-expressing neutrophils in AS patients were further analyzed for their correlation with the markers of inflammation such as ESR,CRP,WBC and neutrophil count(NE), as well as disease activity and severity of AS. The expression of Tim3 on neutrophils was monitored during the course of treatment (4 weeks).Results:The expression of Tim3 on neutrophils in patients with AS was increased compared to the HC (Figure 1A). However, significant difference was observed in the frequency of PD-1-expressing neutrophils between AS patients and HC (Figure 1B). The expression analysis of Tim-3 mRNA, but not PD-1, confirmed the results obtained from flow cytometry (Figure 1C). The level of Tim3-expressing neutrophils in patients with AS showed an positive correlation with ESR, CRP and ASAS-endorsed disease activity score (ASDAS) (Figure 1D). Moreover, the frequency of Tim3-expressing neutrophils in active patients(ASDAS≥1.3) was increased as compare with the inactive patients (ASDAS<1.3) (Figure 1E). As shown in Figure 1F, the frequency of Tim3-expressing neutrophils decreased after the treatment.Conclusion:Increased Tim-3 expression on neutrophils may be a novel indicator to assess disease activity and severity in AS, which may serves as a negative feedback mechanism preventing potential tissue damage caused by excessive inflammatory responses in AS patients.References:[1]Han, G., Chen, G., Shen, B. & Li, Y., Tim-3: an activation marker and activation limiter of innate immune cells. FRONT IMMUNOL 4 449 (2013).[2]Vega-Carrascal, I. et al., Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. J IMMUNOL 192 2418 (2014).Figure 1.(A,B)The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by flow cytometry.(C) The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by RT-PCR.(D)The correction between Tim3-expressing neutrophils and ESR,CRP,ASDAS.(E) The expression of Tim3 on neutrophils in active and inactive patients.(F) Influence of treatment on the frequency of Tim3-expressing neutrophils.Disclosure of Interests:None declared


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 703
Author(s):  
Kayla Fantone ◽  
Samantha L. Tucker ◽  
Arthur Miller ◽  
Ruchi Yadav ◽  
Eryn E. Bernardy ◽  
...  

Cystic fibrosis (CF) airway disease is characterized by chronic microbial infections and infiltration of inflammatory polymorphonuclear (PMN) granulocytes. Staphylococcus aureus (S. aureus) is a major lung pathogen in CF that persists despite the presence of PMNs and has been associated with CF lung function decline. While PMNs represent the main mechanism of the immune system to kill S. aureus, it remains largely unknown why PMNs fail to eliminate S. aureus in CF. The goal of this study was to observe how the CF airway environment affects S. aureus killing by PMNs. PMNs were isolated from the blood of healthy volunteers and CF patients. Clinical isolates of S. aureus were obtained from the airways of CF patients. The results show that PMNs from healthy volunteers were able to kill all CF isolates and laboratory strains of S. aureus tested in vitro. The extent of killing varied among strains. When PMNs were pretreated with supernatants of CF sputum, S. aureus killing was significantly inhibited suggesting that the CF airway environment compromises PMN antibacterial functions. CF blood PMNs were capable of killing S. aureus. Although bacterial killing was inhibited with CF sputum, PMN binding and phagocytosis of S. aureus was not diminished. The S. aureus-induced respiratory burst and neutrophil extracellular trap release from PMNs also remained uninhibited by CF sputum. In summary, our data demonstrate that the CF airway environment limits killing of S. aureus by PMNs and provides a new in vitro experimental model to study this phenomenon and its mechanism.


2012 ◽  
Vol 80 (11) ◽  
pp. 3921-3929 ◽  
Author(s):  
Donporn Riyapa ◽  
Surachat Buddhisa ◽  
Sunee Korbsrisate ◽  
Jon Cuccui ◽  
Brendan W. Wren ◽  
...  

ABSTRACTBurkholderia pseudomalleiis the causative pathogen of melioidosis, of which a major predisposing factor is diabetes mellitus. Polymorphonuclear neutrophils (PMNs) kill microbes extracellularly by the release of neutrophil extracellular traps (NETs). PMNs play a key role in the control of melioidosis, but the involvement of NETs in killing ofB. pseudomalleiremains obscure. Here, we showed that bactericidal NETs were released from human PMNs in response toB. pseudomalleiin a dose- and time-dependent manner.B. pseudomallei-induced NET formation required NADPH oxidase activation but not phosphatidylinositol-3 kinase, mitogen-activated protein kinases, or Src family kinase signaling pathways.B. pseudomalleimutants defective in the virulence-associated Bsa type III protein secretion system (T3SS) or capsular polysaccharide I (CPS-I) induced elevated levels of NETs. NET induction by such mutants was associated with increased bacterial killing, phagocytosis, and oxidative burst by PMNs. Taken together the data imply that T3SS and the capsule may play a role in evading the induction of NETs. Importantly, PMNs from diabetic subjects released NETs at a lower level than PMNs from healthy subjects. Modulation of NET formation may therefore be associated with the pathogenesis and control of melioidosis.


Sign in / Sign up

Export Citation Format

Share Document