P-MD005. Neuroprotective effects of gossypetin in alzheimer's disease: Therapeutic approaches to evaluate the acetylcholinesterase and butyl cholinesterase inhibitory potential

2021 ◽  
Vol 132 (8) ◽  
pp. e97-e98
Author(s):  
Dinesh Kumar Patel ◽  
Kanika Patel
2021 ◽  
Vol 11 (9) ◽  
pp. 1211
Author(s):  
Yinyi Xiong ◽  
Chae-Seok Lim

Alzheimer’s disease (AD), the most common neurodegenerative disease, is characterized by progressive cognitive impairment. The deposition of amyloid beta (Aβ) and hyperphosphorylated tau is considered the hallmark of AD pathology. Many therapeutic approaches such as Food and Drug Administration-approved cholinesterase inhibitors and N–methyl–D–aspartate receptor antagonists have been used to intervene in AD pathology. However, current therapies only provide limited symptomatic relief and are ineffective in preventing AD progression. Cannabidiol (CBD), a phytocannabinoid devoid of psychoactive responses, provides neuroprotective effects through both cannabinoid and noncannabinoid receptors. Recent studies using an AD mouse model have suggested that CBD can reverse cognitive deficits along with Aβ-induced neuroinflammatory, oxidative responses, and neuronal death. Furthermore, CBD can reduce the accumulation of Aβ and hyperphosphorylation of tau, suggesting the possibility of delaying AD progression. Particularly, the noncannabinoid receptor, peroxisome proliferator-activated receptor gamma, has been suggested to be involved in multiple functions of CBD. Therefore, understanding the underlying mechanisms of CBD is necessary for intervening in AD pathology in depth and for the translation of preclinical studies into clinical settings. In this review, we summarize recent studies on the effect of CBD in AD and suggest problems to be overcome for the therapeutic use of CBD.


2020 ◽  
Vol 18 ◽  
Author(s):  
Ilkay Erdogan Orhan

: Natural substances are known to have strong protective effects against neurodegenerative diseases. Among them, phenolic compounds, especially flavonoids, come to the fore with their neuroprotective effects. Since quercetin, which is found in many medicinal plants and foods, is also taken through diet, its physiological effects on humans are imperative. Many studies have been published up to date on the neuroprotective properties of quercetin, a flavanol derivative. However, there is no review published so far summarizing the effect of quercetin on the cholinesterase (ChE) enzymes related to the cholinergic hypothesis, which is one of the pathological mechanisms of Alzheimer's disease (AD). However, ChE inhibitors regardless of natural or synthetic play a vital role in the treatment of AD. Although the number of studies on the ChE inhibitory effect of quercetin is limited, it deserves to be discussed in a review article. With this sensitivity, the neuroprotective effect of quercetin against AD through ChE inhibition was scrutinized in the current review study. In addition, studies on the bioavailability of quercetin and its capacity to cross the blood-brain barrier and how this capacity and bioavailability can be increased were given. Generally, studies containing data published in recent years were obtained from search engines such as PubMed, Scopus, and Medline and included herein. Consequently, quercetin should not be considered as a fashionable natural compound and should be identified as a promising compound, especially with increased bioavailability, for the treatment of AD.


2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


2014 ◽  
Vol 23 (1) ◽  
pp. 33
Author(s):  
Nathalia Liberato Nascimento ◽  
Iwyson Henrique Fernandes da Costa ◽  
Rivelilson Mendes de Freitas

The objective of this study was to conduct a review about the nutritional aspects and their influences on the pathophysiology of Alzheimer’s disease. The review describes the pathophysiology of Alzheimer’s disease, the generally indicated diets, and the nutritional factors that may aggravate the disease based on a literature review using the following keywords in English and Portuguese: “Alzheimer’s disease”, “physiopathology”, “nutritional aspects”, and “antioxidants”. A total of 100 articles were found, 48 in Lilacs and 52 in MedLine, but only 54 articles were selected for the review. The use of antioxidants as free radical scavengers is generally indicated in diets for Alzheimer’s patients. Studies also suggest that caffeine, vitamin B12, and folic acid have neuroprotective effects. Cohort studies found that a high intake of saturated fatty acids and obesity increase the risk of Alzheimer’s disease. People with Alzheimer’s disease should avoid diets high in carbohydrates and saturated fats, and prefer foods high in antioxidants.Keywords: Alzheimer disease; Antioxidants; Neurophysiology; Review literture as topic.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2019 ◽  
Vol 19 (8) ◽  
pp. 688-705
Author(s):  
Taibi Ben Hadda ◽  
Abdur Rauf ◽  
Hsaine Zgou ◽  
Fatma Sezer Senol ◽  
Ilkay Erdogan Orhan ◽  
...  

Background:Since deficit of acetylcholine has been evidenced in the Alzheimer’s disease (AD) patients, cholinesterase inhibitors are currently the most specified drug category for the remediation of AD.Method:In the present study, 16 compounds (1-16) with dicarbonyl skeletons have been synthesized and tested for their inhibitory potential in vitro against AChE and BChE using ELISA microtiter plate assays at 100 μg/mL. Since metal accumulation is related to AD, the compounds were also tested for their metal-chelation capacity.Results and Conclusion:All the investigated dicarbonyl compounds exerted none or lower than 30% inhibition against both cholinesterases, whereas compounds 2, 8 and 11 showed 37, 42, 41% of inhibition towards BChE, being the most active. The highest metal-chelation capacity was observed with compound 8 (53.58 ± 2.06%). POM and DFT analyses are in good harmonization with experimental data.


2019 ◽  
Vol 18 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Xinxin Fu ◽  
Tingting Qin ◽  
Jiayu Yu ◽  
Jie Jiao ◽  
Zhanqiang Ma ◽  
...  

Background: Alzheimer’s disease is one of the most common neurodegenerative diseases in many modern societies. The core pathogenesis of Alzheimer’s disease includes the aggregation of hyperphosphorylated Tau and abnormal Amyloid-β generation. In addition, previous studies have shown that neuroinflammation is one of the pathogenesis of Alzheimer’s disease. Formononetin, an isoflavone compound extracted from Trifolium pratense L., has been found to have various properties including anti-obesity, anti-inflammation, and neuroprotective effects. But there are very few studies on the treatment of Alzheimer’s disease with Formononetin. Objective: The present study focused on the protective activities of Formononetin on a high-fat dietinduced cognitive decline and explored the underlying mechanisms. Methods: Mice were fed with HFD for 10 weeks and intragastric administrated daily with metformin (300 mg/kg) and Formononetin (20 and 40 mg/kg). Results: We found that Formononetin (20, 40 mg/kg) significantly attenuated the learning and memory deficits companied by weight improvement and decreased the levels of blood glucose, total cholesterol and triglyceride in high-fat diet-induced mice. Meanwhile, we observed high-fat diet significantly caused the Tau hyperphosphorylation in the hippocampus of mice, whereas Formononetin reversed this effect. Additionally, Formononetin markedly reduced the levels of inflammation cytokines IL-1β and TNF-α in high-fat diet-induced mice. The mechanism study showed that Formononetin suppressed the pro-inflammatory NF-κB signaling and enhanced the anti-inflammatory Nrf-2/HO-1 signaling, which might be related to the regulation of PGC-1α in the hippocampus of high-fat diet -induced mice. Conclusion: Taken together, our results showed that Formononetin could improve the cognitive function by inhibiting neuroinflammation, which is attributed to the regulation of PGC-1α pathway in HFD-induced mice.


Sign in / Sign up

Export Citation Format

Share Document