Quantifying morphological and mechanical properties of thermoplastics elastomers by selective localization of nanofillers with different geometries

Author(s):  
Nithin Chandran ◽  
C Sarathchandran ◽  
Anjaly Sivadas ◽  
Allisson Saiter-Fourcin ◽  
Sabu Thomas
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1583 ◽  
Author(s):  
Xiang Lu ◽  
Benhao Kang ◽  
Shengyu Shi

The electrically conductive poly (lactic acid) (PLA)/recycled high-density polyethylene (HDPE)/carbon black (CB) composites with a fine co-continuous micro structure and selective localization of CB in the HDPE component were fabricated by one-step melt processing via a twin-screw extruder. Micromorphology analysis, electrical conductivity, thermal properties, thermal stability, and mechanical properties were investigated. Scanning electron microscope (SEM) images indicate that a co-continuous morphology is formed, and CB is selectively distributed in the HDPE component. With the introduction of CB, the phase size of the PLA component and the HDPE component in PLA/HDPE blends is reduced. In addition, differential scanning calorimetry (DSC) and thermos gravimetric analysis (TGA) results show that the introduction of CB promotes the crystallization behavior of the PLA and HDPE components, respectively, and improves the thermal stability of PLA70/30HDPE/CB composites. The electrically conductive percolation threshold of the PLA70/30HDPE/CB composites is around 5.0 wt %, and the electrical conductivity of PLA70/30HDPE/CB composites reaches 1.0 s/cm and 15 s/cm just at the 10 wt % and 15 wt % CB loading, respectively. Further, the tensile and impact tests show that the PLA70/30HDPE/CB composites have good mechanical properties. The excellent electrical conductivity and good mechanical properties offer the potential to broaden the application of PLA/HDPE/CB composites.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Sign in / Sign up

Export Citation Format

Share Document