Three-dimensional woven structural glass fiber/polytetrafluoroethylene (PTFE) composite antenna with superb integrity and electromagnetic performance

2021 ◽  
pp. 115096
Author(s):  
Kun Zhang ◽  
Da Zhao ◽  
Wei Chen ◽  
Liangang Zheng ◽  
Lan Yao ◽  
...  
2018 ◽  
Vol 206 ◽  
pp. 03001
Author(s):  
X Zhang ◽  
X L Chang ◽  
R L Ma ◽  
L Zhang ◽  
X D Chen ◽  
...  

A three-dimensional coupled model of electromagnetic field, temperature field and curing degree field was established. Based on this model, the simulation of microwave curing process of glass fiber epoxy ring was realized, and the temperature distribution at different time was obtained. Numerical results indicate that the temperature difference within the composite ring is mainly formed in the initial stage during microwave curing.


2000 ◽  
Vol 122 (4) ◽  
pp. 301-305 ◽  
Author(s):  
A. Q. Xu ◽  
H. F. Nied

Cracking and delamination at the interfaces of different materials in plastic IC packages is a well-known failure mechanism. The investigation of local stress behavior, including characterization of stress singularities, is an important problem in predicting and preventing crack initiation and propagation. In this study, a three-dimensional finite element procedure is used to compute the strength of stress singularities at various three-dimensional corners in a typical Flip-Chip assembled Chip-on-Board (FCOB) package. It is found that the stress singularities at the three-dimensional corners are always more severe than those at the corresponding two-dimensional edges, which suggests that they are more likely to be the potential delamination sites. Furthermore, it is demonstrated that the stress singularity at the upper silicon die/epoxy fillet edge can be completely eliminated by an appropriate choice in geometry. A weak stress singularity at the FR4 board/epoxy edge is shown to exist, with a stronger singularity located at the internal die/epoxy corner. The influence of the epoxy contact angle and the FR4 glass fiber orientation on stress state is also investigated. A general result is that the strength of the stress singularity increases with increased epoxy contact angle. In addition, it is shown that the stress singularity effect can be minimized by choosing an appropriate orientation between the glass fiber in the FR4 board and the silicon die. Based on these results, several guidelines for minimizing edge stresses in IC packages are presented. [S1043-7398(00)00904-X]


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7307
Author(s):  
Xinjun Fu ◽  
Xiaojun Wang ◽  
Jinjian Zhu ◽  
Minzhuang Chen

Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also for the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.


2011 ◽  
Vol 295-297 ◽  
pp. 2400-2405
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
Peng Liu ◽  
Xu Liang Deng ◽  
Qing Cai ◽  
...  

Three-dimensional digital oral treatment technology based on anatomical features of jaw bone and teeth was applied for modeling. Three dimensional finite element models for the restorative systems with straight glass fiber post, screw glass fiber post and one-piece glass fiber post-and-core were established. Stress and deformation under external bite force were calculated and compared among different post types. Comparing the maximum von Mises equivalent stress in the whole restorative system for the straight post, the screw post and the one-piece glass fiber post-and-core finds that the one-piece glass fiber post-and-core is effective to lower the maximum stress and obtain uniform stress distribution of the teeth. Even in each part of the restorative system like post, crown and root, the maximum stress in the case of one-piece glass fiber post-and-core is still lowest. Using one-piece glass fiber post-and-core, the overall deformation of the restorative system is decreased greatly.


2019 ◽  
Vol 6 (7) ◽  
pp. 075305 ◽  
Author(s):  
Fangkai Huang ◽  
Ying Yuan ◽  
Zehua Jiang ◽  
Bin Tang ◽  
Shuren Zhang

Sign in / Sign up

Export Citation Format

Share Document