Mechanical properties of recycled fine aggregate concrete incorporating different types of fibers

2021 ◽  
Vol 298 ◽  
pp. 123732
Author(s):  
Danying Gao ◽  
Zhiqiang Gu ◽  
Yuyang Pang ◽  
Lin Yang
2012 ◽  
Vol 446-449 ◽  
pp. 2028-2032 ◽  
Author(s):  
Jian Geng ◽  
Yong Yong Chen ◽  
Jia Ying Sun ◽  
Wei Chen

In this article, the basic mechanical characters of recycled fine aggregate concrete (RFAC) are studied, and the relationships of recycled fine aggregate (RFA) content, minimum particle size and water content with them are also discussed according to results of cubic compressive strength (f¬¬cu), flexural strength (ff), splitting tensile strength(fts), axial compressive strength(fc)and Yang’s modulus (Ec). The results indicate that the use of RFA will induce mechanical properties of RFAC to deteriorate, and the deteriorated trend of it become more obviously with RFA content increased and minimum particle size reduced, in addition to, the early compressive strength of RFA develop slowly. The RFAC elastic modulus is significantly lower than ordinary concrete, besides, RFA on elastic modulus was significantly affected than other mechanical properties.


Materials ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 131 ◽  
Author(s):  
Jeongsoo Nam ◽  
Gyuyong Kim ◽  
Jaechul Yoo ◽  
Gyeongcheol Choe ◽  
Hongseop Kim ◽  
...  

Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


2010 ◽  
Vol 168-170 ◽  
pp. 2200-2203 ◽  
Author(s):  
Shun Bo Zhao ◽  
Na Liang ◽  
Li Xin Liu ◽  
Li Sun ◽  
Su Yang

The validity of the wet-sieving concrete technique for building the reinforced composite concrete wall are demonstrated in the paper. The fine aggregate concrete made by ordinary concrete passing the sieve with square mash of 15 mm was cast for the surface layer, the recomposed concrete mixed by the residual concrete stayed on the sieve with the ordinary concrete was cast for the reinforced concrete structural wall. The mechanical properties such as the cubic and compressive strengths, the elastic modulus and the splitting and flexural tensile strengths of the fine aggregate concrete, the recomposed concrete and the ordinary concrete were tested and analyzed. The results show that the elastic modulus and splitting tensile strength of fine aggregate concrete reduce in some extent compared with that of ordinary concrete, the mechanical properties of recomposed concrete are almost the same as that of ordinary concrete.


2018 ◽  
Vol 250 ◽  
pp. 03002 ◽  
Author(s):  
Muhammad Sazlly Nazreen ◽  
Roslli Noor Mohamed ◽  
Mariyana Aida Ab Kadir ◽  
Nazry Azillah ◽  
Nazirah Ahmad Shukri ◽  
...  

Lightweight concrete (LWC) has been identified as an innovative technique for construction purposes. Lightweight concrete can be categorized into three different types which are no-fine aggregate concrete, lightweight aggregate concrete and aerated concrete. This paper studied the characteristic of the lightweight concrete in term of mechanical properties utilizing the palm oil clinker (POC) as lightweight aggregates. Two mixes of lightweight concrete were developed, namely as POCC100 and POCC50 where each mix utilized 100% and 50% of total replacement to fine and coarse aggregates, respectively. The fresh and hardened POC concrete was tested and compared to the normal concrete (NC). The hardened state of the concrete was investigated through density test, ultrasonic pulse velocity, cube compressive, splitting tensile, flexural, modulus of elasticity and Poisson's ratio. From density test results, POC falls into the category of lightweight concrete with a density of 1990.33 kg/m3, which are below than normal weight concrete density. The mechanical properties test results on POCC100 and POCC50 showed that the concrete compressive strength was comparable about 85.70% and 96% compared to NC specimen, respectively. For the flexural strength, POCC50 and POCC100 were comparable about 98% and 97% to NC specimen, respectively. While splitting tensile strength of POCC50 and POCC100 was only 0.6% and 4% lower than NC specimen, respectively. In terms of sustainability of solid waste management, the application of the POC in construction will reduce the redundant of by-products resulted from the palm oil industries. After undergoing various testing of concrete mechanical properties, it can be concluded that POC aggregates was compatible to be used in ligtweight concrete mix proportion.


2012 ◽  
Vol 253-255 ◽  
pp. 432-435
Author(s):  
Jiu Su Li ◽  
Chun Li Qin

Fine aggregate can be extracted from waste concrete by series of processing. The recycled fine aggregate can then be utilized to manufacture recycled fine aggregate mortar (RFAM) or recycled fine aggregate concrete (RFAC). Air entraining agent was added in RFAM to improve its mechanical performance. The influence of the dosage of the air entraining agent on both the compressive and flexural strength of the RFAM was explored after 7 days and 28 days curing. The optimum dosage of the air entraining agent was determined.


2018 ◽  
Vol 760 ◽  
pp. 193-198 ◽  
Author(s):  
Kristina Fořtová ◽  
Tereza Pavlů

This paper presents research results of recycled fine aggregate concrete testing. The main aim of this contribution is verification of properties of fine aggregate concrete with partial replacement of fine natural aggregate by recycled masonry aggregate originated from construction and demolition waste. The influence of partial replacement of natural sand to mechanical properties and freeze-thaw resistance is described. The compressive strength and flexural strength were tested at the age of 28 and 60 days and after 25, 50, 75 and 100 freeze-thaw cycles. Partial replacement of natural sand was 0, 25 and 50 % for all these tests. Prismatic specimens were examined.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanlin Huang ◽  
An Zhou

In recent years, with the rapid development of the construction industry, the demand for natural river sand has become increasingly prominent. Development of alternatives to river sand has become an interesting direction for concrete research. In this paper, coal gangue was proposed to replace part of the river sand to produce coal gangue fine aggregate concrete, while waste polyethene terephthalate (PET) bottles were used as raw materials to make PET fibers to improve the mechanical properties of coal gangue fine aggregate concrete. There were two parts of the test conducted. In the first part, the compressive strength of the gangue fine aggregate concrete cube, splitting tensile strength, axial compressive strength, and static elastic modulus were studied when the substitution rate of coal gangue increased from 0% to 50%. Referring to the equation of the full stress-strain curve of plain concrete, the stress-strain constitutive equation of coal gangue fine aggregate concrete was analyzed and studied. By comparing with plain concrete, it was found that the coal gangue concrete with a replacement rate of 50% had higher compressive strength and tensile strength, but its brittleness was significantly greater than that of plain concrete in the later stage. In the second part, by studying the effect of different PET fiber content on the mechanical properties of coal gangue fine aggregate concrete with a replacement rate of 50%, it was found that when the addition of PET fiber was 0.1% and 0.3%, not only were compressive strength, splitting tensile strength, static elastic modulus, and flexural strength of the gangue fine aggregate concrete effectively improved but also the brittleness of concrete can be significantly reduced. The study found that after adding 0.3% PET fiber, the coal gangue fine aggregate concrete with a replacement rate of 50% has better mechanical properties and less brittleness.


The proposed study present behaviour of concrete with inclusion of waste foundry sand (WFS), waste glass, and glass fiber in different concrete trial mixes. Waste foundry sand (WFS) is basically by-product formed from metal casting industries ferrous or non-ferrous, which due to rapid concrete construction in world used as an alternative of sand. Waste glass can be used in concrete in crushed form as a replacement of aggregate or in powdered form as a replacement of cement, the only problem with waste glass is it is prone to alkali-silica reaction due to different composition of different types of glasses. Glass fiber is added with waste glass and waste foundry sand (WFS) to increase strength. Normal concrete grade M25 (1:1:2) is used for this experimental purpose, different concrete trials were casted which consist of replacement of sand with waste foundry sand in different proportion (0%, 10%, 20%, and 30%). Next trial consists of optimum value of (WFS) with different proportion of waste glass (0%, 10%, and 20%, 30%) as a replacement of fine aggregate. Final trial consists of addition of glass fiber (0%, 0.25%, 0.50%, and 0.75%) in optimum value of second trial. Mechanical properties of concrete compressive strength, split-tensile strength, flexural strength was examined at 7, 14, 28, and 56 days curing period.


Sign in / Sign up

Export Citation Format

Share Document