Experimental investigation on dynamic properties of ultra-high-performance rubberized concrete (UHPRuC)

2021 ◽  
Vol 307 ◽  
pp. 125104
Author(s):  
Thong M. Pham ◽  
John Davis ◽  
Ngoc San Ha ◽  
Emad Pournasiri ◽  
Feng Shi ◽  
...  
2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.


Author(s):  
Bhaskar Ale ◽  
Carl-Ernst Rousseau

Hollow particulate composites are lightweight, have high compressive strength, are low moisture absorbent, have high damping materials, and are used extensively in aerospace, marine applications, and in the manufacture of sandwich composites core elements. The high performance of these materials is achieved by adding high strength hollow glass particulates (microballoons) to an epoxy matrix, forming epoxy-syntactic foams. The present study focuses on the effect of volume fraction and microballoon size on the ultrasonic and dynamic properties of Epoxy Syntactic Foams. Ultrasonic attenuation coefficient from an experiment is compared with a previously developed theoretical model for low volume fractions that takes into account attenuation loss due to scattering and absorption. The guidelines of ASTM Standard E 664-93 are used to compute the apparent attenuation. Quasi-static compressive tests were also conducted to fully characterize the material. Both quasi-static and dynamic properties, as well as coefficients of attenuation and ultrasonic velocities are found to be strongly dependent upon the volume fraction and size of the microballoons.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881954
Author(s):  
Xinfang Ge ◽  
Biao Chu

A long-travel positioning device, which combines a ball-screw-driven coarse stage with a fine one, driven by piezoelectric translator, to achieve the long-distance traveling, up to 500 mm, as well as high-precision positioning, is crucial in the field of diffraction grating fabrication at nanometer scale. In this article, we present the design of the fine-feed drive stage with resolution as high as 20 nm and propose a single neuron-based proportional–integral–derivative controller to realize ultra-precision positioning. A high-performance piezoelectric translator is used to drive the mechanism, and the parallel leaf springs are used to guide the moving platform with preload force. A dynamic model of the precision positioning mechanism has been established by considering the Hertzian contact. In addition, the static and dynamic properties are investigated with the laser interferometry tracking methodology. The experimental results indicate that the positioning accuracy of less than 10 nm is obtained with the single neuron-based proportional–integral–derivative controller and also demonstrate the excellent performance of the proposed mechanism and control strategy.


Author(s):  
Reidar André Skarbøvik ◽  
Henry Piehl ◽  
Sverre Torben ◽  
Mette Lokna Nedreberg ◽  
Vilmar Æsøy

Abstract In many marine applications, modern high-performance synthetic fibre ropes have replaced, and are continuing to replace, well-known steel wire rope solutions due to the low weight of the synthetic ropes removing limitations for operations at large water depths. In some cases, replacement of steel wires with synthetic ropes has caused permanent deformations and damage to multilayer winch drums, indicating that synthetic fibre ropes can cause larger pressure on winch drums than steel wire. This paper presents the first results from a novel experimental investigation of a multilayer winch subjected to a selection of braided high-performance synthetic fibre ropes and a reference steel wire rope. The tested ropes, with nominal diameters between 12 and 20mm, are spooled at different tensile loads and with maximum number of layers in the range of 10 to 19. The experiments utilize a test rig with two winch drums, controllable spooling gear and sheaves with load cells to apply and control required load and speed during spooling. Measurements from twelve biaxial strain gauges on the inside of a thick high-strength drum are used to measure stresses in the structure. The results show that the selected fibre ropes induce considerably larger stress in the winch drum than the steel wire rope. This confirms that design of multilayer winch drums with high-performance synthetic fibre ropes requires special considerations and that the guidance for multilayer stress calculations, related to steel wire ropes, in DNV-GL-0378 “Standard for offshore and platform lifting appliances” is not applicable for synthetic fibre rope applications.


Sign in / Sign up

Export Citation Format

Share Document