3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure

2022 ◽  
Vol 314 ◽  
pp. 125561
Author(s):  
Junli Liu ◽  
Shuai Li ◽  
Chamila Gunasekara ◽  
Kate Fox ◽  
Phuong Tran
2021 ◽  
Vol 349 ◽  
pp. 01008
Author(s):  
Nikolaos A. Fountas ◽  
Ioannis Papantoniou ◽  
John D. Kechagias ◽  
Dimitrios E. Manolakos ◽  
Nikolaos M. Vaxevanidis

The properties of fused deposition modeling (FDM) products exhibit strong dependence on process parameters which may be improved by setting suitable levels for parameters related to FDM. Anisotropic and brittle nature of 3D-printed components makes it essential to investigate the effect of FDM control parameters to different performance metrics related to resistance for improving strength of functional parts. In this work the flexural strength of polyethylene terephthalate glycol (PET-G) is examined under by altering the levels of different 3D-printing parameters such as layer height, infill density, deposition angle, printing speed and printing temperature. A response surface experiment was established having 27 experimental runs to obtain the results for flexural strength (MPa) and to further investigate the effect of each control parameter on the response by studying the results using statistical analysis. The experiments were conducted as per the ASTM D790 standard. The regression model generated for flexural strength adequately explains the variation of FDM control parameters on flexural strength and thus, it can be implemented to find optimal parameter settings with the use of either an intelligent algorithm, or neural network.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4410
Author(s):  
Na-Kyung Hwangbo ◽  
Na-Eun Nam ◽  
Jong-Hoon Choi ◽  
Jong-Eun Kim

Three-dimensional (3D) printing technology is highly regarded in the field of dentistry. Three-dimensional printed resin restorations must undergo a washing process to remove residual resin on the surface after they have been manufactured. However, the effect of the use of different washing solutions and washing times on the biocompatibility of the resulting resin restorations is unclear. Therefore, we prepared 3D-printed denture teeth and crown and bridge resin, and then washed them with two washing solutions (isopropyl alcohol and tripropylene glycol monomethyl ether) using different time points (3, 5, 10, 15, 30, 60, and 90 min). After this, the cell viability, cytotoxicity, and status of human gingival fibroblasts were evaluated using confocal laser scanning. We also analyzed the flexural strength, flexural modulus, and surface SEM imaging. Increasing the washing time increased the cell viability and decreased the cytotoxicity (p < 0.001). Confocal laser scanning showed distinct differences in the morphology and number of fibroblasts. Increasing the washing time did not significantly affect the flexural strength and surface, but the flexural modulus of the 90 min washing group was 1.01 ± 0.21 GPa (mean ± standard deviation), which was lower than that of all the other groups and decreased as the washing time increased. This study confirmed that the washing time affected the biocompatibility and mechanical properties of 3D printed dental resins.


2020 ◽  
pp. 002199832096352
Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Zhihui Liu

Fused filament fabrication (FFF) has been a major 3D printing technique for making thermoplastic products for decades. However, FFF printing for thermoplastic composites with aligned continuous fibers has been reported with limited success for only several years. In this study, we introduce an enhanced FFF-based approach by incorporating nanoparticles to the thermoplastic composites with continuous fibers. Our investigation focuses on the bending properties of FFF-printed fiber reinforced composites with and without nanoparticles. With Nylon 6 (PA 6) being the matrix material, nanocomposite filaments are obtained by adding carbon nanotubes (CNTs), graphene nano platelets (GNPs), or amino (NH2-) functionalized GNPs. Various PA 6 matrix nanocomposite filaments are prepared through mixing and filament extrusion process. The nanocomposite filaments are then 3D printed with or without continuous Kevlar fiber prepreg filaments. For 3D printed pure PA 6, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 334% and 315%, respectively. For 3D printed PA 6/Kevlar composite, the addition of 1 wt% GNP-NH2 increases the flexural strength and bending modulus by 195% and 35%, respectively. However, the addition of CNTs or GNPs (up to 1 wt%) is less effective as compared with GNP-NH2. The underlying mechanisms are discussed based on the matrix/fiber interfacial analysis.


2019 ◽  
Vol 10 (2) ◽  
pp. 17 ◽  
Author(s):  
Karthik Tappa ◽  
Udayabhanu Jammalamadaka ◽  
Jeffery Weisman ◽  
David Ballard ◽  
Dallas Wolford ◽  
...  

Additive manufacturing has great potential for personalized medicine in osseous fixation surgery, including maxillofacial and orthopedic applications. The purpose of this study was to demonstrate 3D printing methods for the fabrication of patient-specific fixation implants that allow for localized drug delivery. 3D printing was used to fabricate gentamicin (GS) and methotrexate (MTX)-loaded fixation devices, including screws, pins, and bone plates. Scaffolds with different infill ratios of polylactic acid (PLA), both without drugs and impregnated with GS and MTX, were printed into cylindrical and rectangular-shaped constructs for compressive and flexural strength mechanical testing, respectively. Bland PLA constructs showed significantly higher flexural strength when printed in a Y axis at 100% infill compared to other axes and infill ratios; however, there was no significant difference in flexural strength between other axes and infill ratios. GS and MTX-impregnated constructs had significantly lower flexural and compressive strength as compared to the bland PLA constructs. GS-impregnated implants demonstrated bacterial inhibition in plate cultures. Similarly, MTX-impregnated implants demonstrated a cytotoxic effect in osteosarcoma assays. This proof of concept work shows the potential of developing 3D printed screws and plating materials with the requisite mechanical properties and orientations. Drug-impregnated implants were technically successful and had an anti-bacterial and chemotherapeutic effect, but drug addition significantly decreased the flexural and compressive strengths of the custom implants.


2018 ◽  
Vol 939 ◽  
pp. 155-162 ◽  
Author(s):  
Behzad Nematollahi ◽  
Ming Xia ◽  
Jay Sanjayan ◽  
Praful Vijay

Extrusion-based 3D concrete printing is analogous to fused deposition modeling method, which extrudes cementitious materials from a nozzle to build a complex concrete structure layer-by-layer without the use of expensive formwork. This study aims to investigate the influence of type of fiber on inter-layer bond strength and flexural strength of extrusion-based 3D printed geopolymer. An extrudable fly ash-based geopolymer composition previously developed by the authors was reinforced by three types of fibers, namely polyvinyl alcohol (PVA), polypropylene (PP) and polyphenylene benzobisoxazole (PBO) fibers. Control geopolymer specimens with no fiber were also 3D printed for comparison purposes. The results indicated that the incorporation of fibers reduced the inter-layer bond strength of 3D printed geopolymer. This pattern was true regardless of the type of fiber. On the other hand, the flexural strength of 3D printed fiber-reinforced geopolymer mixtures was substantially higher than that of the 3D printed geopolymer with no fiber. The rate of increase in the flexural strength depended on the type of fiber. The flexural failures of the specimens were due to the tensile failure of the bottom layer, rather than the shear failure of the interfaces.


2018 ◽  
Vol 24 (1) ◽  
pp. 160-165 ◽  
Author(s):  
Wei-Ting Chang ◽  
Huang-Jan Hsu ◽  
Cho-Pei Jiang ◽  
Shyh-Yuan Lee ◽  
Yuan-Min Lin

Purpose The aim of this paper is to examine the effects of light controlling system that combined high refractive particles (n-TiO2 [titanium dioxide – TiO2]) and tartrazine lake dye (TL dye) on thickness, flexural strength, flexural modulus and surface details of the 3D-printed resin. Design/methodology/approach Influences of different concentrations of n-TiO2 and TL dye in light-cured resin formulations for 3D printing (3DP) application were evaluated, including curing thickness, flexural strength and surface details under scanning electron microscopy. Findings The polymerization thickness of samples containing both n-TiO2 and TL dye was lower compared to samples with TL dye solely. Samples containing more n-TiO2 and more TL dye exhibited lower flexural strength and modulus. Ramp models showed that for samples containing 1 per cent TL dye, when their n-TiO2 content increased from 1 to 5 per cent, surface laminate structures became sharper. However, when the TL dye content doubled to 2 per cent, the surface laminate structures were indefinite compared to 1 per cent TL dye-containing counterparts. Originality value In visible-light 3DP, light controlling system in cooperate dye with high refractive particles provides better energy distribution and scattering control. High refractive particles, dyes and light exposure time had influenced the surface resolution and mechanical properties of the 3DP products.


2014 ◽  
Vol 803 ◽  
pp. 325-329 ◽  
Author(s):  
Roszilah Hamid ◽  
M.A. Zubir

In this study, recycled glass is used to replace the natural fine aggregate in different mix proportions. The control samples are Grade 30 ordinary Portland cement concrete (OPCC) containing 100% natural sand and coarse aggregate. The recycled glass concretes contain 70% natural fine aggregate + 30% size 300 micron crushed glass (Sample 2), and 70% fine aggregate + 15% size 300 micron crushed glass + 15% size greater than 300 micron crushed glass (Sample 3).The recorded strength of the control, Sample 2 and 3 at 90 days are 47, 61 and 55 MPa. Although the compressive strength for the concrete samples with recycled glass are higher than the control samples, the flexural test results show that, concrete with recycled glass has less ability to be fully functioning as a reinforced concrete by exhibiting their flexural strength at 91 % and 84% of the theoretical flexural strength whereas for the control specimen, its flexural strength is 10% higher than the theoretical value. Nonetheless, the toughness index of recycled glass concrete with 30% replacement of fine sand with recycled glass powder is at par with the control samples, which shows the ductile behavior of the recycled glass concrete.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1879
Author(s):  
Thet Khaing Aung ◽  
Hiroshi Churei ◽  
Gen Tanabe ◽  
Rio Kinjo ◽  
Kaito Togawa ◽  
...  

Sports face guards (FGs) are devices that protect athletes from maxillofacial injury or ensure rapid return to play following orofacial damage. Conventional FGs are uncomfortable to wear owing to stuffiness caused by poor ventilation and often slip off due to increase in weight due to absorption of moisture from perspiration, lowering players’ performance. Herein, combinations of 3D-printed perforated acrylonitrile butadiene styrene (ABS) polymer sheets and 3D-knitted fabrics with honeycomb structures as cushioning materials were investigated to balance better wearing feel and mechanical properties. The flexural strength, weight, and shock absorption ability of, and air flow rate through, the ABS sheets with five different perforation patterns were evaluated and compared with those of conventional FG materials comprising a combination of polycaprolactone sheets for the medical splint and polychloroprene rubber for the cushioning material. The ABS sheets having 10% open area and 2.52 mm round holes, combined with knitted fabric cushioning, exhibited the requisite shock absorbing, higher air permeability, and lower weight properties than the conventional materials. Our results suggest that FGs fabricated using combinations of 3D-printed perforated ABS polymer sheets and 3D-knitted fabrics with honeycomb structures may impart enhanced wearing comfort for athletes.


Sign in / Sign up

Export Citation Format

Share Document