Characterization of Moroccan steel slag waste: The potential green resource for ceramic production

2022 ◽  
Vol 314 ◽  
pp. 125663
Author(s):  
Jihad Rahou ◽  
Halima Rezqi ◽  
Meriam El Ouahabi ◽  
Nathalie Fagel
2016 ◽  
Vol 19 ◽  
pp. 842-846 ◽  
Author(s):  
Pao Ter Teo ◽  
Anasyida Abu Seman ◽  
Projjal Basu ◽  
Nurulakmal Mohd Sharif

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2682
Author(s):  
Gyuhyeon Kim ◽  
Young-Mo Kim ◽  
Su-Min Kim ◽  
Hyun-Uk Cho ◽  
Jong-Moon Park

In this study, magnetic steel slag biochar (MSSB) was synthesized from low-cost steel slag waste to investigate the effectiveness of steel slag biochar composite for NH4-N removal and magnetic properties in aqueous solution. The maximum adsorption capacity of NH4-N by MSSB was 4.366 mg/g according to the Langmuir model. The magnetic properties of MSSB indicated paramagnetic behavior and a saturation magnetic moment of 2.30 emu/g at 2 Tesla. The NH4-N adsorption process was well characterized by the pseudo-second order kinetic model and Temkin isotherm model. This study demonstrated the potential of magnetic biochar synthesized from steel slag waste for NH4-N removal in aqueous solution.


2014 ◽  
Vol 1024 ◽  
pp. 211-214 ◽  
Author(s):  
Pao Ter Teo ◽  
Abu Seman Anasyida ◽  
Mohd Sharif Nurulakmal

The increasing production of steel leads to an increment of solid wastes generated especially Electric Arc Furnace (EAF) slag. This becomes a serious concern as the slag has to be disposed in a proper manner in order to avoid dumping in landfills which will eventually occupy available land and may cause permanent damage to the flora and fauna. In this project, an attempt was made to utilize the EAF slag as one of the raw materials in ceramic tiles. Results obtained showed that as percentage of EAF slag added was increased up to 60%, percentage of apparent porosity and water absorption were found to increase, accompanied by reduction in flexural strength due to more severe porosity was observed in the tiles. On the other hand, reducing the percentage of EAF slag up to 40% while increasing percentage of ball clay added led to formation of higher total percentage of anortite and wollastonite minerals. This would contribute to higher flexural strength of tiles. In addition, by adding silica and feldspar, the flexural strength of tile produced was further improved due to optimization of densification process. Highest flexural strength of EAF slag based tiles was attained at composition of 40% EAF slag 30% ball clay 10% feldspar 20% silica. It was observed that properties of ceramic tiles added with EAF slag, especially flexural strength are comparable with commercial ceramic tiles. Therefore, the EAF slag ceramic tiles have great potential to be made into high flexural strength or wear resistant floor tiles.


2014 ◽  
Vol 805 ◽  
pp. 585-590 ◽  
Author(s):  
Aline Marcia Ferreira Dias da Silva ◽  
Karla Albernaz Sales ◽  
Veronica Scarpini Candido ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

The elephant grass (Pennicetum purpureum) is traditionally used both as fresh feedstock for cattle and, dried, as fuel for ceramic production in Campos dos Goytacazes, Brazil. In the present work the bottom ash generated after dry grass incineration in a ceramic furnace was characterized for a possible addition into red clay ceramics. The characterization comprised the ash morphology by laser microscopy, scanning electron microscopy coupled with EDS and thermal behavior by thermogravimetry as well as differential thermal analysis. These results indicated that the elephant grass ash could be added into a clay body not only as a fluxing agent but also to improve the particles compaction before firing.


2020 ◽  
Vol 31 (1) ◽  
pp. 279-286 ◽  
Author(s):  
Gang Tang ◽  
Xinliang Liu ◽  
Lin Zhou ◽  
Ping Zhang ◽  
Dan Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document