Effect of Protectants Made From Sucrose and Antioxidant Blends On The Stability of Freeze-Dried Lactic Acid Bacteria

Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 160
Author(s):  
Ruodan Cao ◽  
Tomochika Sogabe ◽  
Kiyoshi Kawai
1996 ◽  
Vol 29 (5-6) ◽  
pp. 555-562 ◽  
Author(s):  
Claude P. Champagne ◽  
Francine Mondou ◽  
Yves Raymond ◽  
Denis Roy

2021 ◽  
Author(s):  
Shuto Mikajiri ◽  
Tomochika Sogabe ◽  
Ruodan Cao ◽  
Takahiro Kikawada ◽  
Toru Suzuki ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
SAMSUL RIZAL ◽  
Suharyono Suharyono ◽  
Fibra Nuariny ◽  
Julfi Restu Amelia

Abstract. Rizal S, Suharyono, Nurainy F, Amela JR. 2020. The effects of low-temperature storage on the viability of Lactobacillus casei and the stability of antibacterial activity in green grass jelly synbiotic drinks. Biodiversitas 21: 3826-3831. Synbiotic drinks from green grass jelly have shown antibacterial activity against pathogenic bacteria. These are usually stored at low temperatures to maintain their characteristics. The aim of this study was to determine the effect of storage at low temperature of 10°C on the viability of lactic acid bacteria (Lactobacillus casei) and the stability of the antibacterial activity in synbiotic drinks made of green grass jelly. Antibacterial activity of green grass jelly synbiotic drink was conducted against pathogenic bacteria (Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Escherichia coli). The products were stored for 28 days at 10°C temperature. Observations on the antibacterial activity, pH value, total acid, and total lactic acid bacteria were carried out every 7 days. Antibacterial activity was evaluated using agar well diffusion method. The results showed that storage at low temperature (10 ± 2°C) for 28 days decreased the antibacterial activity and pH value but sharply increased total lactic acid bacteria (at 0 to 7 days of storage) in green grass jelly synbiotic drinks. Salmonella sp. showed the highest inhibition caused by the antibacterial agents in green grass jelly synbiotic drinks while the lowest inhibition was found on Staphylococcus aureus. During storage at low temperature, green grass jelly synbiotic drinks had a total of lactic acid bacteria that ranged from 9.51 to 10.10 (Log CFU/mL) or equal to 3.24x109-1.26x1010 CFU/mL; a total of lactic acid that ranged from 0.48% to 0.87%; and pH values that ranged from 3.78 to 4.08.


Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.


2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Okti Widayati ◽  
Zaenal Bachruddin ◽  
Chusnul Hanim ◽  
Lies Mira Yusiati ◽  
Nafiatul Umami

The objective of this study was to determine the activity and the stability of bacteriocin from lactic acid bacteria (BAL) isolated from rumen fluid of thin-tail sheep under the temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). Lactic acid bacteria obtained by isolation, selection, and identification of thin-tailed sheep rumen fluid were used for bacteriocin production. The crude bacteriocin was partially purified using 70% ammonium sulfate, then was dialysis for 12 hours. The obtained bacteriocin then tested its inhibitory activity against E.coli (representing Gram-negative) and S. aureus (representing Gram-positive) under temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). The data of bacteriocin activity based on pH, temperature, and the length of storage were analyzed with factorial, then when there was a significant difference of variable because treatment was continued with Duncan's Multiple Range Test (DMRT) test. The results showed that the bacteriocin activity of the three types of BAL against S.aureus is greater than E.coli. The highest activity was shown in pH 3, while the lowest activity was shown at pH 10 (P<0.01). The highest activity was shown at a heating temperature of 100°C, while the lowest activity was shown at a heating temperature of 80°C (P<0.01). The activity of bacteriocin produced by BAL 0 A, BAL 1 A, and BAL 4 C tended to be stable to the heating temperature of 80, 100, and 121°C but decreased with increasing pH value (pH 3, 7, and 10). The best of bacteriocin activity was found at pH 3 (acid), heating at 100°C, and stored at -8°C for 14 days.


2016 ◽  
Vol 34 (4) ◽  
pp. 279-279 ◽  
Author(s):  
Yeseo Lim ◽  
Shik Hong ◽  
Yong Kook Shin ◽  
Shin Ho Kang

2015 ◽  
Vol 1 (1) ◽  
pp. 26-33
Author(s):  
IRA ERDIANDINI ◽  
TITI CANDRA SUNARTI ◽  
ANJA MERYANDINI

The development of industrial fermentation food could not separate with the availability of culture starter that suffice to support its production. Dried starter can be an option to use in fermentation industry because it can be stored for longer time without rejuvenation. However, in the process of production of dried starter needs the matrix to maintain cell viability, economically and availability of raw material. This research was conducted to use selected dried starter of indigenous lactic acid bacteria by using sour cassava starch matrix. Eleven local isolates lactic acid bacteria isolates from spontaneous fermentation of carbohydrates commodity were selected based on their acid production capabilities and antibiotics susceptibilities. Isolate of E 1222 showed the best result and was identified as Pediococcus pentosaceus. The isolate was encapsulated with sour cassava starch matrix for making dried starter by using freeze dryer and spray dryer. Freeze dried starter culture could maintained the cell viability higher than spray dried starter culture i.e 10.34 log CFU/g and 8.91 log CFU/g, respectively. Finally, freeze dried starter culture could maintain the percentage of cell viability until 89.38% during four-weeks storage at 4 oC. 


2020 ◽  
Vol 9 (6) ◽  
pp. e14962446
Author(s):  
Shana Kimi Farias Yamaguchi ◽  
Carolina Krebs de Souza ◽  
Sávio Leandro Bertoli ◽  
Lisiane Fernandes de Carvalho

This study aimed to evaluate the physical-chemical characteristics and the viability of lactic acid bacteria during the fermentation process of the yogurt and after the freeze-dried process, in addition to testing three thickener formulations for the rehydration of the yogurt powder. During the fermentation process, the production of lactic acid and the growth of lactic acid bacteria were accompanied.  Before and after freeze-dried process, yogurt was analyzed for pH, titratable acidity, carbohydrates, proteins, lipids and viable lactic acid bacteria. After lyophilization, three thickener formulations were tested to evaluate the rehydration of powdered yogurt. At the end of the fermentation process, it was verified that the lactic acid bacteria grew to reach 7.8.107 UFC.g-1 and the acidity obtained was 9.27 g.L-1.  The viable lactic acid bacteria count of freeze-dried and non-freeze-dried yogurt was 5.6.107 CFU.g-1 and 7.8.107 CFU.g-1, respectively. Non-freeze-dried and freeze-dried yogurts showed a content of 20.8% and 21.0% carbohydrates, 4.0% and 3.6% protein and 3.7% and 2.7% lipids, respectively. The combination of thickeners that provided viscosity similar to commercial yogurts was the guar gum, pectin and maltodextrin mix. Thus, it was possible to verify that the freeze-drying process maintains the physical-chemical characteristics and viability of lactic acid bacteria. In addition, the developed yogurt presented easy reconstitution at the time of consumption.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


Sign in / Sign up

Export Citation Format

Share Document