scholarly journals The effects of low-temperature storage on the viability of Lactobacillus casei and the stability of antibacterial activity in green grass jelly synbiotic drinks

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
SAMSUL RIZAL ◽  
Suharyono Suharyono ◽  
Fibra Nuariny ◽  
Julfi Restu Amelia

Abstract. Rizal S, Suharyono, Nurainy F, Amela JR. 2020. The effects of low-temperature storage on the viability of Lactobacillus casei and the stability of antibacterial activity in green grass jelly synbiotic drinks. Biodiversitas 21: 3826-3831. Synbiotic drinks from green grass jelly have shown antibacterial activity against pathogenic bacteria. These are usually stored at low temperatures to maintain their characteristics. The aim of this study was to determine the effect of storage at low temperature of 10°C on the viability of lactic acid bacteria (Lactobacillus casei) and the stability of the antibacterial activity in synbiotic drinks made of green grass jelly. Antibacterial activity of green grass jelly synbiotic drink was conducted against pathogenic bacteria (Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Escherichia coli). The products were stored for 28 days at 10°C temperature. Observations on the antibacterial activity, pH value, total acid, and total lactic acid bacteria were carried out every 7 days. Antibacterial activity was evaluated using agar well diffusion method. The results showed that storage at low temperature (10 ± 2°C) for 28 days decreased the antibacterial activity and pH value but sharply increased total lactic acid bacteria (at 0 to 7 days of storage) in green grass jelly synbiotic drinks. Salmonella sp. showed the highest inhibition caused by the antibacterial agents in green grass jelly synbiotic drinks while the lowest inhibition was found on Staphylococcus aureus. During storage at low temperature, green grass jelly synbiotic drinks had a total of lactic acid bacteria that ranged from 9.51 to 10.10 (Log CFU/mL) or equal to 3.24x109-1.26x1010 CFU/mL; a total of lactic acid that ranged from 0.48% to 0.87%; and pH values that ranged from 3.78 to 4.08.

Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Okti Widayati ◽  
Zaenal Bachruddin ◽  
Chusnul Hanim ◽  
Lies Mira Yusiati ◽  
Nafiatul Umami

The objective of this study was to determine the activity and the stability of bacteriocin from lactic acid bacteria (BAL) isolated from rumen fluid of thin-tail sheep under the temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). Lactic acid bacteria obtained by isolation, selection, and identification of thin-tailed sheep rumen fluid were used for bacteriocin production. The crude bacteriocin was partially purified using 70% ammonium sulfate, then was dialysis for 12 hours. The obtained bacteriocin then tested its inhibitory activity against E.coli (representing Gram-negative) and S. aureus (representing Gram-positive) under temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). The data of bacteriocin activity based on pH, temperature, and the length of storage were analyzed with factorial, then when there was a significant difference of variable because treatment was continued with Duncan's Multiple Range Test (DMRT) test. The results showed that the bacteriocin activity of the three types of BAL against S.aureus is greater than E.coli. The highest activity was shown in pH 3, while the lowest activity was shown at pH 10 (P<0.01). The highest activity was shown at a heating temperature of 100°C, while the lowest activity was shown at a heating temperature of 80°C (P<0.01). The activity of bacteriocin produced by BAL 0 A, BAL 1 A, and BAL 4 C tended to be stable to the heating temperature of 80, 100, and 121°C but decreased with increasing pH value (pH 3, 7, and 10). The best of bacteriocin activity was found at pH 3 (acid), heating at 100°C, and stored at -8°C for 14 days.


2018 ◽  
Vol 119 ◽  
pp. 208-215 ◽  
Author(s):  
Wandee Sirichokchatchawan ◽  
Puwiya Pupa ◽  
Prasert Praechansri ◽  
Nutthee Am-in ◽  
Somboon Tanasupawat ◽  
...  

Author(s):  
Agnes Lee Chiu Nee ◽  
Mohd Nizam Lani ◽  
Rozila Alias ◽  
Zaiton Hassan

Vinegars are most widely used as preservatives in food industry. Vinegars are known for their health benefits; however, the roles of vinegar-associated microflora in locally produced vinegars are not well established. The objectives of this study are to isolate and identify the lactic acid bacteria (LAB) from black rice vinegar and coconut vinegar, measure their pH and titratable acidity, and determine their antibacterial activity. LAB was isolated using cultural method. Phenotypic characterization of LAB was carried out using Gram-staining, oxidase test, catalase test and API 50 CHL Kit. Results from API 50 CHL Kit confirmed that BRV03M strain from black rice vinegar and CV03M strain from coconut vinegar were Lactobacillus paracasei ssp. paracasei. The identified bacteria in both samples were consistent as L. paracasei using 16S rDNA gene sequences with 93% and 99% similarity, respectively. The pH and titratable acidity percentage of both vinegars were also determined. The stability of Cell Free Supernatant-Lactic Acid Bacteria (CFS-LAB) strains within 14 days on their inhibition against selected pathogenic bacteria was determined using agar well diffusion method. The CFS-LAB strain isolated from black rice vinegar (BRV03M) was more stable within 14 days than coconut vinegar in inhibiting tested bacteria, suggesting this strain has great potential as natural antibacterial agents.


2020 ◽  
Vol 3 (2) ◽  
pp. 174
Author(s):  
Musyirna Rahmah Nasution ◽  
Winda Sri Wahyuni

Synbiotic yogurt is fermented milk containing probiotics and prebiotics. The quality of symbiotic yogurt products during cold storage must meet the SNI quality requirements (2981-2009). This study aimed to find the effect of yogurt storage duration on physicochemical properties and antibacterial activity for the best yogurt storage time. In this study, synbiotic yogurt was made from sweet corn, honey, and full cream milk as prebiotics and Lactobacillus acidophilus and Bifidobacterium bifidum as probiotics. The tests carried out include testing total coliform, total lactic acid bacteria, degree of acidity (pH), total titrated acid, organoleptic quality, and antibacterial activity. The tests were carried out on days 0, 5, 10, 15, and 20. The results showed that storage duration affected product quality and antibacterial activity. The best storage duration for yogurt was found to be ten days, where the yogurt stored for ten days found to have a total coliform of 0 APM/g, total lactic acid bacteria of 2.81 x 1012, total lactic acid of 1.684%, pH value of 3.5 and was still preferred and could be accepted by the panelists, based on the organoleptic assessments. The yogurt stored for ten days also gave the largest average inhibition diameter of 21.78 mm with the category 'very strong' against Escherichia coli and 22.13 mm with the classification 'very strong' against Salmonella typhi. The yogurt stored for up to 10 days still met the SNI yogurt quality standard requirements (2981: 2009).


2021 ◽  
Vol 4 (1) ◽  
pp. 25
Author(s):  
Tri - Ujilestari ◽  
Dian Fajarwati Susilaningrum ◽  
Bernita Adelia Damayanti ◽  
Maulina Afni Saputri ◽  
Rizal Nur Alfian

The purpose of this article is to determine the content of lactic acid bacteria in a probiotic beverage (Yakult) with a starter fermentation of Lactobacillus casei Shirota strain and to find out its benefits for digestion. In this study, the library research method was used by obtaining data and materials from journals. The author tries to describe the content of lactic acid bacteria “L. casei Shirota strain” in Yakult and its benefits for the digestive system. The results showed that the levels of L. casei Shirota strain in fermented milk were 1.27-1.70% with an average of 1.42%. In the Indonesian National Standard 01-2891-2009, the lactic acid bacteria content of L. casei Shirota in fermented milk was 0.5-2.0%. L. casei Shirota can produce lactic acid and acetic acid, so that, it can decrease intestinal pH and prevent pathogens bacteria’s growth. Probiotic beverage from fermented milk using L. casei is beneficial for consumption for its ability in inhibiting the growth and development of pathogenic bacteria in the gastrointestinal tract, help the absorption of vitamins and antioxidants, eliminate toxic components contained in food, as well as producing several vitamins through the synthesis of digestive enzymes.


2021 ◽  
Author(s):  
Bei Zhang ◽  
Jun Chen ◽  
Guofang Wu ◽  
Lei Wang ◽  
Guangyong Qin ◽  
...  

Abstract BackgroundLactic acid bacteria with natural, effective antibacterial activity, safe and reliable characteristic, gradually become one of the key technologies in food fermentation applications, food preservation and other fields. In this study, 112 presumptive lactic acid bacteria isolated from Tibetan Qula, a fermented yak cheese popular in the Tibetan plateau, were screened for potential probiotic microorganism with antimicrobial activity.Results12 lactic acid bacteria were found to have antibacterial activity, and strain QZ50 in particular showed broad-spectrum inhibition against pathogenic bacteria, which retained its antibacterial activity after sequential removal of acids and hydrogen peroxide, indicating the production of a broad-spectrum bacteriocin that could inhibite Micrococcus luteus ATCC 28001, Staphylococcus aureus ATCC 26003, Bacillus subtilis ATCC 63501, Escherichia coli ATCC 30105, Pseudomonas aeruginosa ATCC 10104, and Salmonella enterica ATCC 50094. Strain QZ50 was identified as Lactobacillus plantarum based on physicochemical characteristics and 16S rDNA sequencing. And the optimum production conditions were evaluated to obtain the highest yield of plantaricin QZ50. The optimum medium, temperature, initial pH, and inoculum amount for plantaricin QZ50 production were Man, Rogosa, and Sharpe (MRS), 30°C, 6.5, and 3%, respectively. In addition, different C source, N source and stimulating factors in medium show significant effects on plantaricin QZ50 production (P < 0.05). The optimum C and N source were respectively glucose and yeast extract, and 2% Tween 80 contributed highest production of plantaricin QZ50. Plantaricin QZ50 exhibited strong heat stability and remained activity at pH 2.0–8.0. In addition, plantaricin QZ50 was inactivated by pepsin, proteinase K, trypsin, papain, and chymotrypsin.ConclusionsSome strains of Lactobacillus isolated from the Qula in the Tibetan plateau have good antibacterial activity which could be considered as potential probiotic. The strain of Lactobacillus plantarum QZ50, with a broad-spectrum, stable, safe, and natural antibiotic, has potential applications as a food biopreservative.


2021 ◽  
Vol 15 (01) ◽  
pp. 102-112
Author(s):  
Nazar Hussain ◽  
Muhammad Tariq ◽  
Per Erik Joakim Saris ◽  
Arsalan Zaidi

Introduction: Probiotic and postbiotic potential of thirty-two strains of lactic acid bacteria (LAB), obtained earlier from artisanal dairy sources in Pakistan, have been investigated against major multi-drug resistant (MDR) and food borne pathogenic bacteria. Methodology: LAB strains were identified by 16S rRNA gene sequencing and their antibacterial activity was assessed by the microdilution method. Four LAB isolates, Weissella confusa PL6, Enterococcus faecium PL7, and Lactobacillus delbrueckii PL11 and PL13 were shortlisted. Their ability to degrade lactose and safety for human consumption in terms of hemolysis and antibiotic susceptibility were assessed in vitro. The antibacterial components in the cell-free supernatants (CFSs) of isolate cultures were characterized biochemically by HPLC. Results: Acid neutralization but not protease treatment abolished the antibacterial activity of CFSs. Lactic, acetic and propionic acids were the main acids in the CFSs, and acid production peaked in the stationary phase of growth. The antibacterial activity of the LAB cultures resulted from secretion of organic acids that lowered the pH. The strains exhibited variable ability to degrade lactose and were non-hemolytic and susceptible to the most common antibiotics. Conclusions: These LAB strains are probiotic candidates for further investigation of their postbiotic role in naturally preserving processed foods and for attenuation of lactose intolerance.


2021 ◽  
Vol 16 (4) ◽  
pp. 328-333
Author(s):  
H. D. Shihah ◽  
D. Sunarti ◽  
S. Sumarsih

The balancing of digestive tract microbe can improve the digestive health of broiler chickens. Fermented lime waste flour (FLWF) contains citric acid, which can decrease digestive tract pH value to suppress pathogenic bacteria development and improve lactic acid bacteria growth in the small intestine of the broiler. The purpose of the study was to evaluate the effect of using FLWF on pH value and small intestine microbial of broiler chickens. This study used 200 female broiler chickens. The research used a completely randomized design with four treatment levels of FLWF by 0%, 1%, 2%, and 3% in every ration, with each treatment replicated five times. The parameters observed are the pH value of the small intestine, lactic acid bacteria ileum, and Coliform ileum. Data were calculated using the analysis of variance and difference test with Duncan's Multiple Range Test using the SPSS 19.0 program. The result indicates that using FLWF decreased (p<0.05) Coliform in the ileum, while pH value of small intestine and ileum lactic acid bacteria among treatments were not influenced (p>0.05). It concludes that adding FLWF at a 1% level could decrease ileum Coliform. Still, it could not decrease the pH value of the small intestine and increase the total lactic bacteria ileum. 


Sign in / Sign up

Export Citation Format

Share Document