scholarly journals Heat spreading of liquid jet impingement cooling of cold plate heat sink with different fin shapes

2020 ◽  
Vol 20 ◽  
pp. 100638 ◽  
Author(s):  
Songkran Wiriyasart ◽  
Paisarn Naphon
1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


Author(s):  
Avijit Bhunia ◽  
Chung-Lung Chen

This paper presents a study of liquid jet impingement cooling technique and its system level implementation for thermal management of an inverter module in a hybrid vehicle. Clusters of anti-freeze liquid jet array impinge on the base plate of a 450V (DC Link voltage)/400A (RMS current) module, made by Semikron, Inc. In the harsh environment of an automobile, the ambient temperature of the coolant is 105°C, and the maximum allowable flow rate and pressure drop are 2.5GPM and 1.6bar respectively. The impingement cooling technique demonstrates 1623 Watts of heat dissipation for 20°C device temperature rise above ambient. This translates to a chip level dissipation power density of 56W/cm2, approximately 1.8X improvement over forced convection liquid cooling in the state-of-the-art pin fin cold plate. At the highest power, the less than 3°C temperature variation among the twelve IGBT measurements indicates a high degree of reliability in module operation. The efficient phase change heat transfer mechanism sets in at local base plate temperatures between 109–111°C, which accounts for more than 10% of the total heat dissipation at 1600W level.


Author(s):  
Zhongyang Shen ◽  
Qi Jing ◽  
Yonghui Xie ◽  
Di Zhang

Cooling technique in mini-scale heat sink is essential with the development of high power electronics such as electronic chip. As heat transfer techniques, jet impingement cooling and convective cooling by roughened surface are commonly adopted. To obtain good cooling efficiency, the cooling structure within the heat sink should be carefully designed. In the present study, mini-scale heat sink with feature size of 1∼10 mm is set up. Arrangement of jet impingement and dimple/protrusion surface are designed as heat transfer augmentation approaches. The effect of dimple/protrusion configuration is discussed. From the result, the Nu distribution of on heat sink surface is demonstrated for each case. The pressure penalty due to the arrangement of roughened structure is evaluated. Also, thermal performance TP and performance evaluation plot are adopted as evaluations of cooling performance for each configuration. Comparing all cases, optimal cooling structure considering the energy saving performance is obtained for the mini-scale heat sink. Referencing the statistics, new insight has been provided for the design of cooling structure inside mini-scale heat sink.


Author(s):  
Afzal Husain ◽  
Jun-Hee Kim ◽  
Kwang-Yong Kim

The present study investigated thermal performance of silicon-based multiple micro-jet impingement cooling heat sink for thermal management of electronics. Three-dimensional numerical analysis was performed for steady incompressible laminar flow and conjugate heat transfer through a finite volume solver. A heat flux of 100 W/cm2 was applied at one side of the silicon substrate, while at the other side jet impingement system was designed. The jet plate was consisted of many jet holes whereas computational domain was simplified by utilizing symmetric boundary conditions along the flow as well as lateral directions. The effect of various design parameters, namely, jet diameter, jet pitch, standoff (distance from jet exit to impingement surface) etc., have been analyzed at jet Reynolds numbers 100, 200 and 300 under laminar flow conditions. In view of the low pumping powers available through micro-pumping systems, low flow rates were applied for the analysis. The cross-flow effects of the spent-flow were investigated for finding out optimum design parameters and flow conditions for the heat sink. The temperature distribution was discussed for various values of jet diameter, standoff and jet-to-jet spacing. While a moderate thermal resistance of the heat sink was obtained under laminar flow conditions, high performance can be achieved for higher flow-rate turbulent flow conditions at the expense of excessive pressure-drop which would be investigated in future studies.


2021 ◽  
Vol 323 ◽  
pp. 00010
Author(s):  
Marcin Froissart ◽  
Paweł Ziółkowski ◽  
Janusz Badur

The rising demand for efficient cooling technologies is a strong driver of extensive research in this area. This trend is particularly strong in turbines and microprocessors technology. Presented study is focused on the jet impingement cooling concept, which is used in various configurations for many years. The potential of the heat sink shape modification is not yet fully explored. Available literature suggests that average Nusselt number can be improved by more than 10% by adding conical shape in the stagnation region. This refers to the axisymmetric case where cold-water jet impinges the surface of heated aluminium. Presented results are based on 2D axisymmetric thermal-FSI (Fluid-Solid Interaction) model, which was validated against the experiment. The objective of the presented analysis is to determine the correlation between cooling effectiveness (Nusselt number) and chosen examples of concave and convex shapes located in the jet stagnation area.


Sign in / Sign up

Export Citation Format

Share Document