scholarly journals Pore structure and crack characteristics in high-temperature granite under water-cooling

Author(s):  
Xinghui Wu ◽  
Qifeng Guo ◽  
Yu Zhu ◽  
Fenhua Ren ◽  
Jie Zhang ◽  
...  
2002 ◽  
Vol 17 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Magnus Wikström ◽  
Mikael Bouveng ◽  
Mikael Rigdahl ◽  
Anthony G. Hiorns

2007 ◽  
Vol 546-549 ◽  
pp. 2273-2278 ◽  
Author(s):  
Yan Jun Wang ◽  
Zuo Min Liu

A new cermet sinter with sweat-gland micro-pore structure has been developed by powder metallurgy technology in vacuum. The effects of the pore-forming materials on micro-pore structure and Y2O3 additions as well mechanical properties of TiC/FeCrWMoV cermets were investigated. Some typical sweat-gland micro-pores were formed while compound additives TiH2 and CaCO3 adding into the sinter matrix. The porosity of the cermet sinters changes from 20% to 28% with the compound additives from 6% to 8%, and the micro-pores of sinters exist a regularized and interpenetrated network structure just like human’s sweat-gland one and obeying to Rayleigh Distribution. As such the sinters could be easily infiltrated with high-temperature solid lubricant. For improving the property of the ceramet sinter, the elements Y2O3 of 0.6~0.8% (vol. fraction ) was also added into the sinter matrix and its effect on the sinter has been also discussed .


Author(s):  
Tan Chen ◽  
Wei-jun Zhang ◽  
Jian-jun Yuan ◽  
Liang Du ◽  
Ze-yu Zhou

Purpose – This paper aims to present a different cooling method (water cooling) to protect all the mechanical/electrical components for Tokamak in-vessel inspection manipulator. The method is demonstrated effective through high temperature experiment, which provides an economical and robust approach for manipulators to work normally under high temperature. Design/methodology/approach – The design of cooling system uses spiral copper tube structure, which is versatile for all types of key components of manipulator, including motors, encoders, drives and vision systems. Besides, temperature sensors are set at different positions of the manipulator to display temperature data to construct a close-loop feedback control system with cooling components. Findings – The cooling system for the whole inspection manipulator working under high temperature is effective. Using insulation material such as rubber foam as component coating can significantly reduce the environmental heat transferred to cooling system. Originality/value – Compared with nitrogen gas cooling applied in robotic protection design, although it is of less interest in prior research, water cooling method proves to be effective and economical through our high temperature experiment. This paper also presents an energetic analysis method to probe into the global process of water cooling and to evaluate the cooling system.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liangbin Dou ◽  
Guanli Shu ◽  
Hui Gao ◽  
Jinqing Bao ◽  
Rui Wang

The investigation of changes in physical properties, mechanical properties, and microscopic pore structure characteristics of tight sandstone after high-temperature heat treatment provides a theoretical basis for plugging removal and stimulation techniques, such as high energy gas fracturing and explosive fracturing. In this study, core samples, taken from tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, were first heated to different temperatures (25-800°C) and then cooled separately by two distinct cooling methods—synthetic formation water cooling and natural cooling. The variations of wave velocity, permeability, tensile strength, uniaxial compressive strength, and microscopic pore structure of the core samples were analyzed. Experimental results demonstrate that, with the rise of heat treatment temperature, the wave velocity and tensile strength of tight sandstone decrease nonlinearly, yet its permeability increases nonlinearly. The tight sandstone’s peak strength and elastic modulus exhibit a trend of the first climbing and then declining sharply with increasing temperature. After being treated by heat at different temperatures, the number of small pores varies little, but the number of large pores increases obviously. Compared to natural cooling, the values of physical and mechanical properties of core samples treated by synthetic formation water cooling are apparently smaller, whereas the size and number of pores are greater. It can be explained that water cooling brings about a dramatic reduction of tight sandstone’s surface temperature, generating additional thermal stress and intensifying internal damage to the core. For different cooling methods, the higher the core temperature before cooling, the greater the thermal stress and the degree of damage caused during the cooling process. By taking into consideration of changes in physical properties, mechanical properties, and microscopic pore structure characteristics, the threshold temperature of tight sandstone is estimated in the range of 400-600°C.


ACS Omega ◽  
2020 ◽  
Vol 5 (35) ◽  
pp. 22226-22237
Author(s):  
Yang Guo ◽  
Lu Zhou ◽  
Fanhui Guo ◽  
Xiaokai Chen ◽  
Jianjun Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document