MHC class IIα gene polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus)

2010 ◽  
Vol 34 (10) ◽  
pp. 1042-1050 ◽  
Author(s):  
Tian-jun Xu ◽  
Song-lin Chen ◽  
Yu-xi Zhang
Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Xianhui Ning ◽  
Li Sun

Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.


Vaccine ◽  
2009 ◽  
Vol 27 (15) ◽  
pp. 2150-2155 ◽  
Author(s):  
Hui Yang ◽  
Jixiang Chen ◽  
Guanpin Yang ◽  
Xiao-Hua Zhang ◽  
Rui Liu ◽  
...  

2020 ◽  
Vol 21 (12) ◽  
pp. 4252
Author(s):  
Xianhui Ning ◽  
Li Sun

MicroRNAs (miRNAs) are non-coding regulatory RNAs that play a vital part in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus) is an important aquaculture fish species that has suffered from bacterial diseases, including that caused by Vibrio anguillarum infection. In a previous study, we examined the messenger RNA (mRNA) expression profiles of flounder during V. anguillarum infection and identified 26 hub genes in the flounder immune response. In this study, we performed the micro-transcriptome analysis of flounder spleen in response to V. anguillarum infection at 3 different time points. Approximately 277 million reads were obtained, from which 1218 miRNAs were identified, including 740 known miRNAs and 478 novel miRNAs. Among the miRNAs, 206 were differentially expressed miRNAs (DEmiRs), and 104 of the 206 DEmiRs are novel miRNAs identified for the first time. Most of the DEmiRs were strongly time-dependent. A total of 1355 putative target genes of the DEmiRs (named DETGs) were identified based on integrated analysis of miRNA-mRNA expressions. The DETGs were enriched in multiple functional categories associated with immunity. Thirteen key DEmiRs and 66 immune DETGs formed an intricate regulatory network constituting 106 pairs of miRNAs and DETGs that span five immune pathways. Furthermore, seven of the previously identified hub genes were found to be targeted by 73 DEmiRs, and together they formed interlinking regulatory networks. These results indicate that V. anguillarum infection induces complicated miRNA response with extensive influences on immune gene expression in Japanese flounder.


Sign in / Sign up

Export Citation Format

Share Document