scholarly journals Systematic Identification and Analysis of Circular RNAs of Japanese Flounder (Paralichthys olivaceus) in Response to Vibrio anguillarum Infection

Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Xianhui Ning ◽  
Li Sun

Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.

2019 ◽  
Author(s):  
Meili Zheng ◽  
Lei Zhao ◽  
Xinchun Yang

AbstractRecent studies have reported circular RNA (circRNA) expression profiles in various tissue types; specifically, a recent work showed a detailed circRNA expression landscape in the heart. However, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease (CAD) cases between the heart failure (HF) and non-HF groups. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including KIAA0182, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B and SPECC1. Among the 141 circRNAs substantially different between the HF and non-HF groups (P<0.05;fold change>2), hsa_circ_0005565 stood out, and was mostly associated with positive regulation of metabolic processes and insulin resistancein GO and KEGG pathway analyses, respectively. These data indicate EAT circRNAs contribute to the pathogenesis of metabolic disorders causing HF.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xianhui Ning ◽  
Li Sun

Abstract Background Long non-coding RNAs (lncRNAs) structurally resemble mRNAs and exert crucial effects on host immune defense against pathogen infection. Japanese flounder (Paralichthys olivaceus) is an economically important marine fish susceptible to Vibrio anguillarum infection. To date, study on lncRNAs in flounder is scarce. Results Here, we reported the first systematic identification and characterization of flounder lncRNAs induced by V. anguillarum infection at different time points. A total of 2,368 lncRNAs were identified, 414 of which were differentially expressed lncRNAs (DElncRNAs) that responded significantly to V. anguillarum infection. For these DElncRNAs, 3,990 target genes (named DETGs) and 42 target miRNAs (named DETmiRs) were identified based on integrated analyses of lncRNA-mRNA and lncRNA-miRNA expressions, respectively. The DETGs were enriched in a cohort of functional pathways associated with immunity. In addition to modulating mRNAs, 36 DElncRNAs were also found to act as competitive endogenous RNAs (ceRNAs) that regulate 37 DETGs through 16 DETmiRs. The DETmiRs, DElncRNAs, and DETGs formed ceRNA regulatory networks consisting of 114 interacting DElncRNAs-DETmiRs-DETGs trinities spanning 10 immune pathways. Conclusions This study provides a comprehensive picture of lncRNAs involved in V. anguillarum infection. The identified lncRNAs and ceRNA networks add new insights into the anti-bacterial immunity of flounder.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Jiaojiao He ◽  
Hanjie Gu ◽  
Wenqi Wang ◽  
Yonghua Hu

AbstractCD9 is a glycoprotein of the transmembrane 4 superfamily that is involved in various cellular processes. Studies related to the immune functions and activities of CD9 in teleost fish are limited. In this study, we characterized two CD9 homologs, PoCD9.1 and PoCD9.3, from Japanese flounder (Paralichthys olivaceus). Sequence analysis showed that PoCD9.1 and PoCD9.3 possess characteristic transmembrane 4 superfamily (TM4SF) structures. PoCD9.1 shares 70.61% sequence identity with PoCD9.3. The expression of PoCD9.1 and PoCD9.3 in the three main immune tissues was significantly induced in a time-dependent manner by extracellular and intracellular pathogen infection, which indicates that the two CD9 homologs play an important role in the response to pathogenic infection. Following infection with the extracellular pathogen Vibrio anguillarum, the expression profiles of both PoCD9.1 and PoCD9.3 were similar. After infection with the intracellular pathogen Edwardsiella piscicida, the expression levels of PoCD9.1 and PoCD9.3 were different at different stages of infection, especially in the spleen. The spleen was the most important tissue for the PoCD9.1 and PoCD9.3 responses to pathogen infection among the three examined immune tissues. Knockdown of PoCD9.1 and PoCD9.3 attenuated the ability of host cells to eliminate pathogenic bacteria, and PoCD9.1 knockdown was more lethal than PoCD9.3 knockdown for host cells with E. piscicida infection. Overexpression of PoCD9.1 and PoCD9.3 promoted host or host cell defence against E. piscicida infection. These findings suggest that PoCD9.1 and PoCD9.3 serve as immune-related factors, play an important role in the immune defence system of Japanese flounder, and display different functions in response to different pathogens at different stages of infection.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7781 ◽  
Author(s):  
Kaiqiang Liu ◽  
Xiancai Hao ◽  
Qian Wang ◽  
Jilun Hou ◽  
Xiaofang Lai ◽  
...  

Flatfish undergo extreme morphological development and settle to a benthic in the adult stage, and are likely to be more susceptible to environmental stress. Heat shock proteins 70 (hsp70) are involved in embryonic development and stress response in metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean. Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there were few structure variants compared to other fish species. We constructed a maximum likelihood tree to understand the evolutionary relationship of the hsp70 genes among surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9, hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome data on the Japanese flounder with Edwardsiella tarda to induce stress, and found that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in different developmental stages of the Japanese flounder. We found that at least one hsp70 gene was always highly expressed at various stages of embryonic development of the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed in the Japanese flounder. Our findings provide basic and useful resources to better understand hsp70 genes in flatfish.


Sign in / Sign up

Export Citation Format

Share Document