Detailed analysis of reverse osmosis systems in hot climate conditions

Desalination ◽  
2017 ◽  
Vol 423 ◽  
pp. 41-51 ◽  
Author(s):  
S. Shaaban ◽  
H. Yahya
2018 ◽  
Author(s):  
Sophie Szopa ◽  
Rémi Thiéblemont ◽  
Slimane Bekki ◽  
Svetlana Botsyun ◽  
Pierre Sepulchre

Abstract. The stratospheric ozone layer plays a key role in atmospheric thermal structure and circulation. Although stratospheric ozone distribution is sensitive to changes in composition and climate, the modifications of stratospheric ozone are not usually considered in climate studies at geological time scales. Here, we evaluate with a chemical-climate model the potential role of stratospheric ozone chemistry in the case of the Eocene hot conditions. We show that the structure of the ozone layer is significantly different under these conditions (4×CO2 climate and high concentrations of tropospheric N2O and CH4). While at mid and high latitudes, the total column ozone is found to be enhanced, the tropical ozone column remains more or less unchanged. These ozone changes are related to the stratospheric cooling and an acceleration of stratospheric Brewer-Dobson circulation simulated under Eocene climate. The meridional distribution of the total ozone column appears also to be strongly modified, showing particularly pronounced mid-latitudes maxima and steeper negative poleward gradient from these maxima. These anomalies are consistent with changes in the seasonal evolution of the polar vortex during the winter, especially in the Northern Hemisphere. Compared to a pre-industrial atmospheric composition, the changes in local ozone concentration reach up to 40 % for zonal annual mean and affect temperature by a few Kelvins in the middle stratosphere. As inter-model differences in simulating the deep past temperatures are quite high, the consideration of atmospheric chemistry, which is computationally demanding in Earth system models, may seem superfluous. However, our results suggest that using stratospheric ozone calculated by the model (and hence more physically consistent with Eocene conditions) instead of the commonly specified preindustrial ozone distribution can change the simulated global surface air temperature by 14 %. This error is of the same order as the effect of non-CO2 boundary conditions (topography, bathymetry, solar constant & vegetation). Moreover, the results highlight the sensitivity of stratospheric ozone to hot climate conditions. Since the climate sensitivity to stratospheric ozone feedback largely differs between models, it must be better constrained not only for deep past conditions but also for future climates.


2021 ◽  
Vol 31 (4) ◽  
pp. 243-248
Author(s):  
Nassima Bakir

Most developing countries have hot climate, ordinary jobsites characterized by reduced of human resources, equipment and infrastructures. The objective of this article is to make an experimental study of the influence of the hot climate such as that of Algeria, on the different properties of concrete in the fresh state, such as excessive water evaporation from the concrete surface, increased demand for water, increased slump loss corresponding to additional water on job-site, higher plastic shrinkage cracking and difficulty in controlling air content. At the hardened state, we could mention a reduction of strength at 28 days, decreased durability resulting from cracking at long-term period. To show the problems linked to concreting under these conditions and to present the appropriate solutions concrete or mortar can withstand the conditions in which it is implemented. Thus, negative effects caused principally by hot weather concreting motivated the choice of the such study. The research experimental work conditions in which the cementitious matrix was kept concerned two different environments, namely hot and dry climate conditions (t = 40°, h = 0%) alike the climate of the region of M'sila., and that of a medium with a hot and humid environment (t = 40°, h = 100%). The output of the investigation demonstrated the crucial role of the cure method in hot regions. The comparison of results for a reference concrete kept in air without any curing measures with two curing types simulating hot weather environment of the region M’sila was undertaken. These obtained outcome results were discussed based on the influence of climatic conditions to conclude procedures for hot weather concreting and suitable cure methods.


2021 ◽  
pp. 1-50
Author(s):  
Xiaoquan Chen ◽  
Fengcun Xing ◽  
Shu Jiang ◽  
Yongchao Lu ◽  
Zhongrong Liu ◽  
...  

Using fresh cores samples, we determined the origin and formation process of Eocene lacustrine dolomites in the Tibetan Plateau through petrological, mineralogical, and geochemical analyses. Dolomitic rocks were collected from the upper member of Eocene Niubao Formation in the Lunpola Basin, and consist of dolomitic mudstone, argillaceous dolomite, dolomite-bearing mudstone and mud-bearing dolomite. These dolomites are dominated by aphanotopic and micro-crystalline dolomites, with minor amounts of euhedral or subhedral powder- and fine-crystalline dolomites. Carbon and oxygen stable isotopes, combined with ubiquitous gypsum in study area, indicates a semi-saline continental lake under strong evaporative conditions. The revealed relatively high temperature of dolomitization(33.8°C–119.1°C), combined with hydrothermal minerals such as cerous phosphate and barite, reflect the participation of dolomite from hot fluids. Moreover, the inferred dolomitization temperatures decrease gradually toward the centre of the lake basin, suggesting the resurgence of hydrothermal fluids along a fault zone on the lake margin. This proves that frequent thermal events occurred at the boundary fault of the Lunpola Basin margin during early Himalayan orogenesis. In addition, Jurassic carbonates interacting with hydrothermal fluids, as well as strong evaporation conditions, likely provided favourable conditions for the formation of primary lime sediments. A rich source of Mg2+ brought by volcanic ash, hydrothermal fluids, and the Jurassic carbonates then created conditions for dolomitization during the depositional period. Strong evaporation under a relatively hot climate enhanced penecontemporaneous dolomitization, thus forming dolomite. Tibetan Plateau was under arid to semi-arid climate conditions, and there was a widespread distribution of dolostones in western, central, and northern China during the Eocene period. The hydrothermal dolomites of the upper Niubao Formation testify for active hot springs, while lacustrine dolomite imply arid or semi-arid climates during the Eocene, in the early stages of Himalayan orogenesis.


2013 ◽  
Vol 142 (1) ◽  
pp. 149-155 ◽  
Author(s):  
M. PERRY MARKOVICH ◽  
T. SHOHAT ◽  
I. RIKLIS ◽  
R. AVNI ◽  
D. YUJELEVSKI-ROZENBLIT ◽  
...  

SUMMARYToxoplasmosis seroprevalence varies considerably between countries. We studied the seoprevalence ofToxoplasma gondiiIgG antibodies in a national sample of the Israeli population; 2794 sera were tested. The highest age-adjusted seroprevalence rate was in Arabs (non-Bedouins) (60·4%), significantly higher compared to the rate in Jews (19·9%) and Bedouins (27·5%) (P < 0·01). There were no significant gender differences. Seropositivity increased with age in all population groups. For Jews, seropositivity was associated with place of birth and socioeconomic status. A finding of low seroprevalence rate in Bedouins despite their poor living conditions and close contact with livestock is surprising, and might be attributed to the dry and hot climate conditions in their area of residence. In women of reproductive age the seroprevalence was 15·1% in Jews, 25·4% in Bedouins and 72·3% in Arabs (non-Bedouins). Thus, the majority of pregnant women are susceptible to primary infection withT. gondii, and the risk for congenital toxoplasmosis remains high.


2011 ◽  
Vol 413 ◽  
pp. 539-540
Author(s):  
Sayibjan Negmatov ◽  
Bahrom Rahmonov ◽  
Bakhodir Sobirov ◽  
Akbar Abdullaev ◽  
Yuldosh Salimsakov ◽  
...  

We researched and developed effective polymer bitumen composites for hermetic of deformities seals of concrete and asphalts roads, bridges, aerodrome and airfields used in hot climate conditions and high lands.


2020 ◽  
Vol 216 ◽  
pp. 01151
Author(s):  
Daniyar Bakhtiyarovich Madrakhimov ◽  
Vera Pavlovna Ivanova ◽  
Victoria Vyacheslavovna Tsypkina

Reliability of cable lines in hot climate is determined by the climatic characteristics of cables and wires, which include: long-term and short-term heat resistance, cold resistance, moisture resistance, resistance to cyclic exposure to temperatures and solar radiation, ozone resistance, etc. This article considers the main impacts of environmental factors: high temperatures, solar radiation, which, as practice shows, lead to irreversible deterioration of the electrical and mechanical properties of cable products. The result of climatic impacts in the Central Asian region, in hot climate conditions, is the aging of both insulation and protective coverings, which leads to irreversible change in the mechanical and electrical properties of the used polymers due to the loss of elasticity of the extruded material and its subsequent cracking, turning into cracks. The assessment of the possibility of long-term operation of the used polymer was carried out according to the polyethylene oxidation period, which determines the time of natural preservation of various types of cables during the period of their operation. The research was carried out on samples of cables stored under a canopy in wooden boxes, protected from sunlight and precipitation, by measuring criterion parameters with strict compliance with the established norms. Thus, the proposed solution for increasing the reliability of cable lines consists of debugging the technological process of applying insulation and sheathing, in which the extrusion of the polymer mass is carried out by technique that minimizes the ingress of contamination. Review of the results showed that extrusion line improvement would provide possibility of increasing reliability in the operation of cable products under the impact of climatic factors of the Central Asian region due to the reduced aging of insulation.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 973 ◽  
Author(s):  
Youssef A. Attia ◽  
Fulvia Bovera ◽  
Jinquan Wang ◽  
Mohammed A. Al-Harthi ◽  
Woo Kyun Kim

The objective of this study was to evaluate the effect of low-protein diets with amino acid supplementation on growth performance, carcass yield, meat quality and nitrogen excretion of broilers raised under hot climate conditions during the finisher period. In trial 1, broilers from 28 to 49 days of age were fed 18% crude protein (CP) as a positive control or 15% CP supplemented with (1) DL-methionine (Met) + L-lysine (Lys), (2) Met + Lys + L-Arginine (Arg), or (3) Met + Lys + L-Valine (Val). In trial 2, broilers from 30 to 45 days of age, were fed an 18% CP diet as a positive control or 15% CP supplemented with Met, Lys, Arg, Val, L-Isoleucine (Ile) or combination with glycine (Gly) and/or urea as nitrogen sources: (1) Met + Lys, (2) Met + Lys + Arg, (3) Met + Lys + Val, (4) Met + Lys + Ile, (5) Met + Lys + Arg +Val + Ile + Gly, and (6) Met+ Lys + Arg + Val + Ile + Gly + urea. Protein use was improved by feeding low-protein amino acid-supplemented diets as compared to the high-protein diet. Feeding 15% crude protein diet supplemented with only methionine and lysine had no negative effects on carcass yield, CP, total lipids and moisture% of breast meat while decreasing nitrogen excretion by 21%.


Sign in / Sign up

Export Citation Format

Share Document