The effect of high stress on T-cell protein expression in chronic drug users: HIV implications

2015 ◽  
Vol 146 ◽  
pp. e227
Author(s):  
Nawal Boukli ◽  
Sheila Lopez ◽  
Madeline Rodriguez ◽  
Eddy Rios
2012 ◽  
Vol 15 (7) ◽  
pp. 651-657 ◽  
Author(s):  
Nando Dulal Das ◽  
Kyoung Hwa Jung ◽  
Ji Hyun Park ◽  
Mi Ran Choi ◽  
Hyung Tae Lee ◽  
...  

2006 ◽  
Vol 17 (11) ◽  
pp. 4846-4855 ◽  
Author(s):  
Susann Karlsson ◽  
Katarzyna Kowanetz ◽  
Åsa Sandin ◽  
Camilla Persson ◽  
Arne Östman ◽  
...  

We have previously shown that the T-cell protein tyrosine phosphatase (TC-PTP) dephosphorylates the platelet-derived growth factor (PDGF) β-receptor. Here, we show that the increased PDGF β-receptor phosphorylation in TC-PTP knockout (ko) mouse embryonic fibroblasts (MEFs) occurs primarily on the cell surface. The increased phosphorylation is accompanied by a TC-PTP–dependent, monensin-sensitive delay in clearance of cell surface PDGF β-receptors and delayed receptor degradation, suggesting PDGF β-receptor recycling. Recycled receptors could also be directly detected on the cell surface of TC-PTP ko MEFs. The effect of TC-PTP depletion was specific for the PDGF β-receptor, because PDGF α-receptor homodimers were cleared from the cell surface at the same rate in TC-PTP ko MEFs as in wild-type MEFs. Interestingly, PDGF αβ-receptor heterodimers were recycling. Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF β-receptors colocalized with Rab4a, a marker for rapid recycling. In accordance with this, transient expression of a dominant-negative Rab4a construct increased the rate of clearance of cell surface receptors on TC-PTP ko MEFs. Thus, loss of TC-PTP specifically redirects the PDGF β-receptor toward rapid recycling, which is the first evidence of differential trafficking of PDGF receptor family members.


2001 ◽  
Vol 276 (28) ◽  
pp. 26036-26043 ◽  
Author(s):  
Ernest Asante-Appiah ◽  
Kristen Ball ◽  
Kevin Bateman ◽  
Kathryn Skorey ◽  
Rick Friesen ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1428-1440 ◽  
Author(s):  
Xunxian Liu ◽  
Julia T. Arnold ◽  
Marc R. Blackman

β-Catenin/T-cell factor signaling (β-CTS) plays multiple critical roles in carcinogenesis and is blocked by androgens in androgen receptor (AR)-responsive prostate cancer (PrCa) cells, primarily via AR sequestration of β-catenin from T-cell factor. Dehydroepiandrosterone (DHEA), often used as an over-the-counter nutritional supplement, is metabolized to androgens and estrogens in humans. The efficacy and safety of unregulated use of DHEA are unclear. We now report that DHEA induces β-CTS via increasing association of estrogen receptor (ER)-β with Dishevelled2 (Dvl2) in AR nonresponsive human PrCa DU145 cells, a line of androgen-independent PrCa (AiPC) cells. The induction is temporal, as assessed by measuring kinetics of the association of ERβ/Dvl2, protein expression of the β-CTS targeted genes, c-Myc and cyclin D1, and cell growth. However, in PC-3 cells, another human AiPC cell line, DHEA exerts no detectible effects, partly due to their lower expression of Gα-subunits and DHEA down-regulation of ERβ/Dvl2 association. When Gαq is overexpressed in PC-3 cells, β-CTS is constitutively induced, including increasing c-Myc and cyclin D1 protein expression. This effect involved increasing associations of Gαq/Dvl2 and ERβ/Dvl2 and promoted cell growth. These activities require ERβ in DU-145 and PC-3 cells because they are blocked by ICI 182–780 treatment inactivating ERβ, small interfering RNA administration depleting ERβ, or AR overexpression arresting ERβ. These data suggest that novel pathways activating β-CTS play roles in the progression of AiPC. Although DHEA may enhance PrCa cell growth via androgenic or estrogenic pathways, the effects of DHEA administration on clinical prostate function remain to be determined.


Sign in / Sign up

Export Citation Format

Share Document